Making Arbitrary Graphs Transitively Orientable: Minimal Comparability Completions | SpringerLink
Skip to main content

Making Arbitrary Graphs Transitively Orientable: Minimal Comparability Completions

  • Conference paper
Algorithms and Computation (ISAAC 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4288))

Included in the following conference series:

Abstract

A transitive orientation of an undirected graph is an assignment of directions to its edges so that these directed edges represent a transitive relation between the vertices of the graph. Not every graph has a transitive orientation, but every graph can be turned into a graph that has a transitive orientation, by adding edges. We study the problem of adding an inclusion minimal set of edges to an arbitrary graph so that the resulting graph is transitively orientable. We show that this problem can be solved in polynomial time, and we give a surprisingly simple algorithm for it.

This work is supported by the Research Council of Norway through grant 166429/V30.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press, London (1980)

    MATH  Google Scholar 

  2. Hakimi, S.L., Schmeichel, E.F., Young, N.E.: Orienting graphs to optimize reachability. Information Processing Letters 63(5), 229–235 (1997)

    Article  MathSciNet  Google Scholar 

  3. Heggernes, P., Mancini, F.: Minimal split completions of graphs. In: Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS, vol. 3887, pp. 592–604. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  4. Heggernes, P., Mancini, F., Papadopoulos, C.: Minimal comparabiltiy completions. Reports in Informatics 317, University of Bergen (2006), http://www.ii.uib.no/publikasjoner/texrap/pdf/2006-317.pdf

  5. Heggernes, P., Suchan, K., Todinca, I., Villanger, Y.: Minimal interval completions. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 403–414. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  6. Heggernes, P., Telle, J.A., Villanger, Y.: Computing minimal triangulations in time O(n αlogn) = o(n 2.376). In: Proceedings of SODA 2005 - 16th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 907–916 (2005)

    Google Scholar 

  7. Kratsch, D., McConnell, R.M., Mehlhorn, K., Spinrad, J.P.: Certifying algorithms for recognizing interval graphs and permutation graphs. SIAM J. Comput. (to appear, 2006)

    Google Scholar 

  8. Kratsch, D., Spinrad, J.P.: Between O(nm) and O(n α). In: Proceedings of SODA 2003 - 14th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 709–716 (2003)

    Google Scholar 

  9. Kratsch, D., Spinrad, J.P.: Minimal fill in o(n 3) time. Discrete Math. 306(3), 366–371 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  10. Natanzon, A., Shamir, R., Sharan, R.: Complexity classification of some edge modification problems. Disc. Appl. Math. 113, 109–128 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  11. Rapaport, I., Suchan, K., Todinca, I.: Minimal proper interval completions. In: Fomin, F.V. (ed.) WG 2006. LNCS, vol. 4271, pp. 2006–2032. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  12. Roberts, F.S.: Graph Theory and Its Application to Problems of Society. Society for Industrial and Applied Mathematics, Philadelphia, PA (1978)

    Google Scholar 

  13. Rose, D., Tarjan, R.E., Lueker, G.: Algorithmic aspects of vertex elimination on graphs. SIAM J. Comput. 5, 266–283 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  14. Spinrad, J.: On comparability and permutation graphs. SIAM J. Comput. 14, 658–670 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  15. Yannakakis, M.: Computing the minimum fill-in is NP-complete. SIAM J. Alg. Disc. Meth. 2, 77–79 (1981)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Heggernes, P., Mancini, F., Papadopoulos, C. (2006). Making Arbitrary Graphs Transitively Orientable: Minimal Comparability Completions. In: Asano, T. (eds) Algorithms and Computation. ISAAC 2006. Lecture Notes in Computer Science, vol 4288. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11940128_43

Download citation

  • DOI: https://doi.org/10.1007/11940128_43

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-49694-6

  • Online ISBN: 978-3-540-49696-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics