Constructing Labeling Schemes Through Universal Matrices | SpringerLink
Skip to main content

Constructing Labeling Schemes Through Universal Matrices

  • Conference paper
Algorithms and Computation (ISAAC 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4288))

Included in the following conference series:

Abstract

Let f be a function on pairs of vertices. An f-labeling scheme for a family of graphs \({\mathcal F}\) labels the vertices of all graphs in \({\mathcal F}\) such that for every graph \(G\in{\mathcal F}\) and every two vertices u,vG, f(u,v) can be inferred by merely inspecting the labels of u and v. The size of a labeling scheme is the maximum number of bits used in a label of any vertex in any graph in \({\mathcal F}\). This paper illustrates that the notion of universal matrices can be used to efficiently construct f-labeling schemes.

Let \({\mathcal F}(n)\) be a family of connected graphs of size at most n and let \({\mathcal C}({\mathcal F},n)\) denote the collection of graphs of size at most n, such that each graph in \({\mathcal C}({\mathcal F},n)\) is composed of a disjoint union of some graphs in \({\mathcal F}(n)\). We first investigate methods for translating f-labeling schemes for \({\mathcal F}(n)\) to f-labeling schemes for \({\mathcal C}({\mathcal F},n)\). In particular, we show that in many cases, given an f-labeling scheme of size g(n) for a graph family \({\mathcal F}(n)\), one can construct an f-labeling scheme of size g(n)+loglogn+O(1) for \({\mathcal C}({\mathcal F},n)\). We also show that in several cases, the above mentioned extra additive term of loglogn+O(1) is necessary. In addition, we show that the family of n-node graphs which are unions of disjoint circles enjoys an adjacency labeling scheme of size logn+O(1). This illustrates a non-trivial example showing that the above mentioned extra additive term is sometimes not necessary.

We then turn to investigate distance labeling schemes on the class of circles of at most n vertices and show an upper bound of 1.5logn+O(1) and a lower bound of 4/3lognO(1) for the size of any such labeling scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alstrup, S., Bille, P., Rauhe, T.: Labeling schemes for small distances in trees. In: Proc. 14th ACM-SIAM Symp. on Discrete Algorithms (January 2003)

    Google Scholar 

  2. Alstrup, S., Gavoille, C., Kaplan, H., Rauhe, T.: Nearest Common Ancestors: A Survey and a new Distributed Algorithm. Theory of Computing Systems 37, 441–456 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  3. Abiteboul, S., Kaplan, H., Milo, T.: Compact labeling schemes for ancestor queries. In: Proc. 12th ACM-SIAM Symp. on Discrete Algorithms (January 2001)

    Google Scholar 

  4. Alstrup, S., Rauhe, T.: Improved Labeling Scheme for Ancestor Queries. In: Proc. 19th ACM-SIAM Symp. on Discrete Algorithms (January 2002)

    Google Scholar 

  5. Alstrup, S., Rauhe, T.: Small induced-universal graphs and compact implicit graph representations. In: Proc. 43rd IEEE Symp. on Foundations of Computer Science (November 2002)

    Google Scholar 

  6. Chung, F.R.K.: Universal graphs and induced-universal graphs. J. of Graph Theory 14(4), 443–454 (1990)

    Article  MATH  Google Scholar 

  7. Cohen, E., Halperin, E., Kaplan, H., Zwick, U.: Reachability and Distance Queries via 2-hop Labels. In: Proc. 13th ACM-SIAM Symp. on Discrete Algorithms (January 2002)

    Google Scholar 

  8. Cohen, E., Kaplan, H., Milo, T.: Labeling dynamic XML trees. In: Proc. 21st ACM Symp. on Principles of Database Systems (June 2002)

    Google Scholar 

  9. Fraigniaud, P., Gavoille, C.: Routing in trees. In: Proc. 28th Int. Colloq. on Automata, Languages & Prog., pp. 757–772 (July 2001)

    Google Scholar 

  10. Gavoille, C., Paul, C.: Split decomposition and distance labelling: an optimal scheme for distance hereditary graphs. In: Proc. European Conf. on Combinatorics, Graph Theory and Applications (September 2001)

    Google Scholar 

  11. Gavoille, C., Peleg, D.: Compact and Localized Distributed Data Structures. J. of Distributed Computing 16, 111–120 (2003)

    Article  Google Scholar 

  12. Gavoille, C., Katz, M., Katz, N.A., Paul, C., Peleg, D.: Approximate Distance Labeling Schemes. In: 9th European Symp. on Algorithms, pp. 476–488 (August 2001)

    Google Scholar 

  13. Gavoille, C., Peleg, D., Pérennes, S., Raz, R.: Distance labeling in graphs. In: Proc. 12th ACM-SIAM Symp. on Discrete Algorithms, pp. 210–219 (January 2001)

    Google Scholar 

  14. Korman, A.: General Compact Labeling Schemes for Dynamic Trees. In: Proc. 19th Symp. on Distributed Computing (September 2005)

    Google Scholar 

  15. Korman, A., Kutten, S.: Distributed Verification of Minimum Spanning Trees. In: 25th Annual ACM SIGACT-SIGOPS Symp. on Principles of Distributed Computing (July 2006)

    Google Scholar 

  16. Kannan, S., Naor, M., Rudich, S.: Implicit representation of graphs. SIAM J. on Descrete Math. 5, 596–603 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  17. Kaplan, H., Milo, T.: Short and simple labels for small distances and other functions. In: Workshop on Algorithms and Data Structures (August 2001)

    Google Scholar 

  18. Kaplan, H., Milo, T.: Parent and ancestor queries using a compact index. In: Proc. 20th ACM Symp. on Principles of Database Systems (May 2001)

    Google Scholar 

  19. Kaplan, H., Milo, T., Shabo, R.: A Comparison of Labeling Schemes for Ancestor Queries. In: Proc. 19th ACM-SIAM Symp. on Discrete Algorithms (January 2002)

    Google Scholar 

  20. Katz, M., Katz, N.A., Korman, A., Peleg, D.: Labeling schemes for flow and connectivity. SIAM Journal on Computing 34, 23–40 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  21. Katz, M., Katz, N.A., Peleg, D.: Distance labeling schemes for well-separated graph classes. In: Proc. 17th Symp. on Theoretical Aspects of Computer Science, pp. 516–528 (February 2000)

    Google Scholar 

  22. Korman, A., Peleg, D.: Labeling Schemes for Weighted Dynamic Trees. In: Proc. 30th Int. Colloq. on Automata, Languages & Prog. (July 2003)

    Google Scholar 

  23. Korman, A., Peleg, D., Rodeh, Y.: Labeling schemes for dynamic tree networks. Theory of Computing Systems 37, 49–75 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  24. Lozin, V.V.: On minimal universal graphs for hereditary classes. J. Discrete Math. Appl. 7(3), 295–304 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  25. Lozin, V.V., Rudolf, G.: Minimal universal bipartite graphs. Ars Combinatoria (to appear)

    Google Scholar 

  26. Moon, J.W.: On minimal n-universal graphs. Proc. Galasgow Math. Soc. 7, 32–33 (1965)

    Article  MATH  Google Scholar 

  27. Peleg, D.: Proximity-preserving labeling schemes and their applications. In: Proc. 25th Int. Workshop on Graph-Theoretic Concepts in Computer Science, pp. 30–41 (June 1999)

    Google Scholar 

  28. Peleg, D.: Informative labeling schemes for graphs. In: Proc. 25th Symp. on Mathematical Foundations of Computer Science, pp. 579–588 (August 2000)

    Google Scholar 

  29. Rado, R.: Universal graphs and universal functions. Acta. Arith., 331–340 (1964)

    Google Scholar 

  30. Thorup, M.: Compact oracles for reachability and approximate distances in planar digraphs. J. of the ACM 51, 993–1024 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  31. Thorup, M., Zwick, U.: Compact routing schemes. In: Proc. 13th ACM Symp. on Parallel Algorithms and Architecture, Hersonissos, Crete, Greece, pp. 1–10 (July 2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Korman, A., Peleg, D., Rodeh, Y. (2006). Constructing Labeling Schemes Through Universal Matrices. In: Asano, T. (eds) Algorithms and Computation. ISAAC 2006. Lecture Notes in Computer Science, vol 4288. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11940128_42

Download citation

  • DOI: https://doi.org/10.1007/11940128_42

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-49694-6

  • Online ISBN: 978-3-540-49696-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics