Multiobjective Optimization: Improved FPTAS for Shortest Paths and Non-linear Objectives with Applications | SpringerLink
Skip to main content

Multiobjective Optimization: Improved FPTAS for Shortest Paths and Non-linear Objectives with Applications

  • Conference paper
Algorithms and Computation (ISAAC 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4288))

Included in the following conference series:

  • 1259 Accesses

Abstract

We provide an improved FPTAS for multiobjective shortest paths, a fundamental (NP-hard) problem in multiobjective optimization, along with a new generic method for obtaining FPTAS to any multiobjective optimization problem with non-linear objectives. We show how these results can be used to obtain better approximate solutions to three related problems that have important applications in QoS routing and in traffic optimization.

This work was partially supported by the FET Unit of EC (IST priority – 6th FP), under contracts no. FP6-021235-2 (ARRIVAL) and no. IST-2002-001907 (DELIS).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ackermann, H., Newman, A., Röglin, H., Vöcking, B.: Decision Making Based on Approximate and Smoothed Pareto Curves. In: Deng, X., Du, D.-Z. (eds.) ISAAC 2005. LNCS, vol. 3827, pp. 675–684. Springer, Heidelberg (2005); (full version as Tech. Report AIB-2005-23, RWTH Aachen, December 2005)

    Chapter  Google Scholar 

  2. Corley, H., Moon, I.: Shortest Paths in Networks with Vector Weights. Journal of Optimization Theory and Applications 46(1), 79–86 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  3. Ehrgott, M.: Multicriteria Optimization. Springer, Heidelberg (2000)

    MATH  Google Scholar 

  4. Ehrgott, M., Gandibleux, X. (eds.): Multiple Criteria Optimization – state of the art annotated bibliographic surveys. Kluwer Academic Publishers, Boston (2002)

    MATH  Google Scholar 

  5. Gabriel, S., Bernstein, D.: The Traffic Equilibrium Problem with Nonadditive Path Costs. Transportation Science 31(4), 337–348 (1997)

    Article  MATH  Google Scholar 

  6. Gabriel, S., Bernstein, D.: Nonadditive Shortest Paths: Subproblems in Multi-Agent Competitive Network Models. Computational & Mathematical Organization Theory 6, 29–45 (2000)

    Article  Google Scholar 

  7. Goel, A., Ramakrishnan, K.G., Kataria, D., Logothetis, D.: Efficient Computation of Delay-Sensitive Routes from One Source to All Destinations. In: Proc. IEEE Conf. Comput. Commun. – INFOCOM (2001)

    Google Scholar 

  8. Hansen, P.: Bicriterion Path Problems. In: Proc. 3rd Conf. Multiple Criteria Decision Making – Theory and Applications. LNEMS, vol. 117, pp. 109–127. Springer, Heidelberg (1979)

    Google Scholar 

  9. Lorenz, D.H., Raz, D.: A simple efficient approximation scheme for the restricted shortest path problem. Operations Res. Lett. 28, 213–219 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  10. Van Mieghem, P., Kuipers, F.A., Korkmaz, T., Krunz, M., Curado, M., Monteiro, E., Masip-Bruin, X., Sole-Pareta, J., Sanchez-Lopez, S.: Quality of Service Routing, ch. 3. In: Smirnov, M. (ed.) Quality of Future Internet Services. LNCS, vol. 2856, pp. 80–117. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  11. Papadimitriou, C., Yannakakis, M.: On the Approximability of Trade-offs and Optimal Access of Web Sources. In: Proc. 41st Symp. on Foundations of Computer Science – FOCS 2000, pp. 86–92 (2000)

    Google Scholar 

  12. Tsaggouris, G., Zaroliagis, C.: Improved FPTAS for Multiobjective Shortest Paths with Applications, CTI Techn. Report TR-2005/07/03 (July 2005)

    Google Scholar 

  13. Tsaggouris, G., Zaroliagis, C.: Multiobjective Optimization: Improved FPTAS for Shortest Paths and Non-linear Objectives with Applications, CTI Techn. Report TR-2006/03/01 (March 2006)

    Google Scholar 

  14. Vassilvitskii, S., Yannakakis, M.: Efficiently Computing Succinct Trade-off Curves. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 1201–1213. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  15. Warburton, A.: Approximation of Pareto Optima in Multiple-Objective Shortest Path Problems. Operations Research 35, 70–79 (1987)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tsaggouris, G., Zaroliagis, C. (2006). Multiobjective Optimization: Improved FPTAS for Shortest Paths and Non-linear Objectives with Applications. In: Asano, T. (eds) Algorithms and Computation. ISAAC 2006. Lecture Notes in Computer Science, vol 4288. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11940128_40

Download citation

  • DOI: https://doi.org/10.1007/11940128_40

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-49694-6

  • Online ISBN: 978-3-540-49696-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics