Negation-Limited Complexity of Parity and Inverters | SpringerLink
Skip to main content

Negation-Limited Complexity of Parity and Inverters

  • Conference paper
Algorithms and Computation (ISAAC 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4288))

Included in the following conference series:

  • 1179 Accesses

Abstract

We give improved lower bounds for the size of negation-limited circuits computing Parity and for the size of negation-limited inverters. An inverter is a circuit with inputs x 1,...,x n and outputs ¬x 1,...,¬x n . We show that (1) For n=2r–1, circuits computing Parity with r–1 NOT gates have size at least 6n–log2(n+1)–O(1) and (2) For n=2r–1, inverters with r NOT gates have size at least 8n–log2(n+1)–O(1). We derive our bounds above by considering the minimum size of a circuit with at most r NOT gates that computes Parity for sorted inputs x 1≥⋯≥x n . For an arbitraryr, we completely determine the minimum size. For odd n, it is 2nr–2 for ⌈log2(n+1)⌉–1≤rn/2, and it is \(\lfloor 3/2 \: n\rfloor-1\) for rn/2. We also determine the minimum size of an inverter for sorted inputs with at most r NOT gates. It is 4n–3r for ⌈log2(n+1) ⌉≤rn. In particular, the negation-limited inverter for sorted inputs due to Fischer, which is a core component in all the known constructions of negation-limited inverters, is shown to have the minimum possible size. Our fairly simple lower bound proofs use gate elimination arguments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Amano, K., Maruoka, A.: A Superpolynomial Lower Bound for a Circuit Computing the Clique Function with at most (1/6)loglogn Negation Gates. SIAM J. Comput. 35(1), 201–216 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  2. Amano, K., Maruoka, A., Tarui, J.: On the Negation-Limited Circuit Complexity of Merging. Discrete Applied Mathematics 126(1), 3–8 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  3. Beals, R., Nishino, T., Tanaka, K.: On the Complexity of Negation-Limited Boolean Networks. SIAM J. Comput. 27(5), 1334–1347 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  4. Boppana, R., Sipser, M.: The Complexity of Finite Functions. In: Leeuwen, J.v. (ed.) Handbook of Theoretical Computer Science, vol. A: Algorithms and Complexity, pp. 757–804. Elsevier/MIT Press (1990)

    Google Scholar 

  5. Fischer, M.: Lectures on Network Complexity, Technical Report 1104, CS Department, Yale University 1974, (revised, 1996), http://cs-www.cs.yale.edu/homes/fischer

  6. Harnik, D., Raz, R.: Higher Lower Bounds on Monotone Size. In: Proc. of 32nd STOC, pp. 378–387 (2000)

    Google Scholar 

  7. Iwama, K., Morizumi, H.: An Explicit Lower Bound of 5n − o(n) for Boolean Circuits. In: Diks, K., Rytter, W. (eds.) MFCS 2002. LNCS, vol. 2420, pp. 353–364. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  8. Long, D.: The Monotone Circuit Complexity of Threshold Functions, Unpublished manuscript, University of Oxford (1986)

    Google Scholar 

  9. Lachish, O., Raz, R.: Explicit Lower Bound of 4.5n − o(n) for Boolean Circuits. In: Proc. of 33rd STOC, pp. 399–408 (2001)

    Google Scholar 

  10. Markov, A.A.: On the Inversion Complexity of a System of Functions. J. ACM 5(4), 331–334 (1958)

    Article  MATH  Google Scholar 

  11. Sato, T., Amano, K., Maruoka, A.: On the Negation-Limited Circuit Complexity of Sorting and Inverting k-tonic Sequences. In: Chen, D.Z., Lee, D.T. (eds.) COCOON 2006. LNCS, vol. 4112, pp. 104–115. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  12. Sung, S.: On Negation-Limited Circuit Complexity, Ph.D. thesis, Japan Advanced Institute of Science and Technology (1998)

    Google Scholar 

  13. Sung, S., Tanaka, K.: Lower Bounds on Negation-Limited Inverters. In: Proc. of 2nd DMTCS: Discrete Mathematics and Theoretical Computer Science Conference, pp. 360–368 (1999)

    Google Scholar 

  14. Tanaka, K., Nishino, T., Beals, R.: Negation-Limited Circuit Complexity of Symmetric Functions. Inf. Process. Lett. 59(5), 273–279 (1996)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Iwama, K., Morizumi, H., Tarui, J. (2006). Negation-Limited Complexity of Parity and Inverters. In: Asano, T. (eds) Algorithms and Computation. ISAAC 2006. Lecture Notes in Computer Science, vol 4288. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11940128_24

Download citation

  • DOI: https://doi.org/10.1007/11940128_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-49694-6

  • Online ISBN: 978-3-540-49696-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics