Abstract
To enable copyright protection and authentication, robust digital watermark can be embedded into multimedia contents imperceptibly. However, geometric distortions pose a significant threat to robust image watermarking because it can desynchronize the watermark information while preserving the visual quality. To overcome this, we developed an invariant domain with three transforms; Fast Fourier Transform (FFT), Log-Polar Mapping (LPM), and Dual Tree-Complex Wavelet Transform (DT-CWT). Shift invariance is obtained using FFT. Rotation and scaling invariance are achieved by taking the DT-CWT of a LPM output. Unlike most invariant schemes, our method eliminates explicit re-synchronization. The method resists geometric distortions at both global and local scales. It is also robust against JPEG compression and common image processing. In addition, it exploits perceptual masking property of the DT-CWT subbands, and its watermark detection step does not require the cover image. Experiment on a large set of natural images shows the robustness of the new scheme.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bas, P., Chassery, J.-M., Macq, B.: Geometrically invariant watermarking using feature points. IEEE Transactions on Image Processing 11(9), 1014–1028 (2002)
Pawlak, M., Xin, Y.: Robust image watermarking: an invariant domain approach. In: Canadian Conference on Electrical and Computer Engineering, 2002. IEEE CCECE 2002, vol. 2, pp. 885–888 (2002)
Ruanaidh, J.J.K.O., Pun, T.: Rotation, scale and translation invariant spread spectrum digital image watermarking. Signal Processing 66(3), 303–317 (1998)
Lin, C.-Y., et al.: Rotation, scale, and translation resilient watermarking for images. IEEE Transactions on Image Processing 10(5), 767–782 (2001)
Zheng, D., Zhao, J.: RST invariant digital image watermarking based on resynchronization. In: Canadian Conference on Electrical and Computer Engineering, vol. 3, pp. 1281–1284 (2004)
Zheng, D., Liu, Y., Zhao, J.: RST invariant digital image watermarking based on a new phase-only filtering method. In: Proceedings of 7th International Conference on Signal Processing, 2004. ICSP 2004, vol. 1, pp. 25–28 (2004)
Liu, Y., Zhao, J.: A new filtering method for RST invariant image watermarking. In: Proceedings of the 2nd IEEE Internatioal Workshop on Haptic, Audio and Visual Environments and Their Applications, 2003. HAVE 2003, pp. 101–106 (2003)
Xuan, J., Zhang, H., Wang, L.: Rotation, scaling and translation invariant image watermarking based on Radon transform. In: Visual Communications and Image Processing 2005. 2005: SPIE–The International Society for Optical Engineering, pp. 1499–1505 (2005)
Kim, B.-S., et al.: Robust digital image watermarking method against geometrical attacks. Real-Time Imaging 9(2), 139–149 (2003)
Kim, B.-S., Choi, J.-G., Park, K.-H.: RST-Resistant Image Watermarking Using Invariant Centroid and Reordered Fourier-Mellin Transform. In: Kalker, T., Cox, I., Ro, Y.M. (eds.) IWDW 2003. LNCS, vol. 2939, pp. 370–381. Springer, Heidelberg (2004)
Kim, H.S., Lee, H.-K.: Invariant image watermark using Zernike moments. IEEE Transactions on Circuits and Systems for Video Technology 13(8), 766–775 (2003)
Kingsbury, N.G.: Complex wavelets for shift invariant analysis and filtering of signals. Journal of Applied and Computational Harmonic Analysis 10(3), 234–253 (2001)
Selesnick, I.W., Baraniuk, R.G., Kingsbury, N.C.: The dual-tree complex wavelet transform. Signal Processing Magazine, IEEE 22(6), 123–151 (2005)
Loo, P., Kingsbury, N.G.: Motion estimation based registration of geometrically distorted images for watermark recovery. In: SPIE Conference on Security and Watermarking of Multimedia Contents III. SPIE, San Diego, USA, pp. 606–617 (2001)
Day, M.-L., Lee, S.-Y., Jou, I.-C.: Watermark Re-synchronization Using Sinusoidal Signals in DT-CWT Domain. In: Aizawa, K., Nakamura, Y., Satoh, S. (eds.) PCM 2004. LNCS, vol. 3333, pp. 394–401. Springer, Heidelberg (2004)
Serdean, C., et al.: Protecting Intellectual Rights: Digital Watermark in the Wavelet Domain. In: IEEE Int. Workshop on Trends and Recent Achievements in IT, Cluj-Napoca, Romania (2002)
Kingsbury, N.: Shift invariant properties of the dual-tree complex wavelet transform. In: 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing. ICASSP 1999. Proceedings, Phoenix, Arizona, USA, pp. 1221–1224 (1999)
Terzija, N., Geisselhardt, W.: Digital image watermarking using complex wavelet transform. In: Proceedings of the 2004 workshop on Multimedia and security, International Multimedia Conference, pp. 193–198. ACM Press, Magdeburg (2004)
Barni, M., Bartolini, F., Piva, A.: Improved wavelet-based watermarking through pixel-wise masking. IEEE Transactions on Image Processing 10(5), 783–791 (2001)
Woo, C.-S., Du, J., Pham, B.: Performance Factors Analysis of a Wavelet-based Watermarking Method. In: The Third Australasian Information Security Workshop (AISW 2005), pp. 89–97. Australian Computer Society, Newcastle, NSW, Australia (2005)
Cox, I., Miller, M.L., Bloom, J.A.: Digital watermarking, p. 539. Morgan Kaufmann Publishers Inc., San Francisco (2001)
Petitcolas, F.A.P.: Watermarking schemes evaluation. Signal Processing Magazine 17(5), 58–64 (2000)
Petitcolas, F.A.P., Anderson, R.J., Kuhn, M.G.: Attacks on Copyright Marking Systems. In: Aucsmith, D. (ed.) IH 1998. LNCS, vol. 1525, pp. 218–239. Springer, Heidelberg (1998)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Woo, CS., Du, J., Pham, B. (2006). Geometric Invariant Domain for Image Watermarking. In: Shi, Y.Q., Jeon, B. (eds) Digital Watermarking. IWDW 2006. Lecture Notes in Computer Science, vol 4283. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11922841_24
Download citation
DOI: https://doi.org/10.1007/11922841_24
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-48825-5
Online ISBN: 978-3-540-48827-9
eBook Packages: Computer ScienceComputer Science (R0)