Abstract
Pattern Management Systems and Inductive Databases, are proposed as a new generation of general purpose databases with the aim to manage data mining patterns and work as knowledge bases in support to the deployment of the KDD process. One of the main problems to be solved is the integration between data and patterns and pattern maintenance when data update. Unfortunately, the heterogeneity of the patterns that represent the extracted knowledge and of the different conceptual tools used to find the patterns make difficult this integration in a unique framework.
In this paper, we explore the feasibility of using XML as the unifying framework for inductive databases, and present a model, named XDM (XML for Data Mining). We will show the basic features of the model, such as the storage in the same database of both data and patterns. To store patterns, we consider determinant for their interpretation the storage of the pattern derivation process which is described by the concept of statement, based on data mining operators. Some of the statements are automatically generated by the system while maintaining consistence between source and derived data. Furthermore, we show how the use of XML namespaces allows the effective coexistence of different data mining operators and provides extensibility to new operators. Finally, we show that with the use of XML-Schema we are able to define the schema, the state and the integrity constraints of an inductive database.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alcamo, P., Domenichini, F., Turini, F.: An xml based environment in support of the overall kdd process. In: FQAS (2000)
Biron, P.V., Malhotra, A.: Xml schema part 2: Data types. Technical Report REC-xmlschema-2-20010502, World Wide Web Consortium (May 2001), http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/
Braga, D., Campi, A., Ceri, S., Klemettinen, M., Lanzi, P.L.: Discovering interesting information in xml data with association rules. In: ACM SAC (2003)
Buchner, A.G., Baumgarten, M.: Data mining and xml: Current and future issues. In: Int. Conf. on Web Information Systems Engineering (2000)
Catania, B., Maddalena, M., Mazza, Bertino, E., Rizzi., S.: A framework for data mining pattern management. In: Proc. of ECML-PKDD 2004, Italy (September 2004)
DMG. The pmml language, http://www.dmg.org/pmml-v2-0.htm
Edmonds, A.N.: Xmlminer, xmlrule and metarule white paper. Technical report, Scientio, Inc. (2002), http://www.kdnuggets.com/news/2001/n14/7i.html
Imielinski, T., Mannila, H.: A database perspective on knowledge discovery. Communications of the ACM 39(11), 58–64 (1996)
Meo, R., Psaila, G., Ceri, S.: An extension to SQL for mining association rules. Journal of Data Mining and Knowledge Discovery 2(2) (1998)
Psaila, G.: Enhancing the kdd process in the relational database mining framework by quantitative evaluation of association rules. In: Knowledge Discovery for Business Information Systems. Kluwer Academic Publishers, Dordrecht (2001)
Rizzi, S.: Uml-based conceptual modeling of pattern-bases. In: Proc. of PaRMA 2004 (2004)
Rizzi, S., Bertino, E., Catania, B., Golfarelli, M., Halkidi, M., Terrovitis, M., Vassiliadis, P., Vazirgiannis, M., Vrachnos, E.: Towards a logical model for patterns. In: Song, I.-Y., Liddle, S.W., Ling, T.-W., Scheuermann, P. (eds.) ER 2003. LNCS, vol. 2813, pp. 77–90. Springer, Heidelberg (2003)
Thompson, H.S., Beech, D., Maloney, M., Mendelsohn, N.: Xml schema part 1: Structures. Technical Report REC-xmlschema-1-20010502, World Wide Web Consortium (May 2001), http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Meo, R., Psaila, G. (2006). An XML-Based Database for Knowledge Discovery. In: Grust, T., et al. Current Trends in Database Technology – EDBT 2006. EDBT 2006. Lecture Notes in Computer Science, vol 4254. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11896548_61
Download citation
DOI: https://doi.org/10.1007/11896548_61
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-46788-5
Online ISBN: 978-3-540-46790-8
eBook Packages: Computer ScienceComputer Science (R0)