Abstract
Recent research efforts in the fields of data stream processing and data stream management systems (DSMSs) show the increasing importance of processing data streams, e. g., in the e-science domain. Together with the advent of peer-to-peer (P2P) networks and grid computing, this leads to the necessity of developing new techniques for distributing and processing continuous queries over data streams in such networks. In this paper, we present a novel approach for optimizing the integration, distribution, and execution of newly registered continuous queries over data streams in grid-based P2P networks. We introduce Windowed XQuery (WXQuery), our XQuery-based subscription language for continuous queries over XML data streams supporting window-based operators. Concentrating on filtering and window-based aggregation, we present our stream sharing algorithms as well as experimental evaluation results from the astrophysics application domain to assess our approach.
This research is supported by the German Federal Ministry of Education and Research within the D-Grid initiative under contract 01AK804F and by Microsoft Research Cambridge under contract 2005-041.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Stegmaier, B., Kuntschke, R., Kemper, A.: StreamGlobe: Adaptive Query Processing and Optimization in Streaming P2P Environments. In: Proc. of the Intl. Workshop on Data Management for Sensor Networks, Toronto, Canada, pp. 88–97 (2004)
Kuntschke, R., Stegmaier, B., Kemper, A., Reiser, A.: StreamGlobe: Processing and Sharing Data Streams in Grid-Based P2P Infrastructures. In: Proc. of the Intl. Conf. on Very Large Data Bases, Trondheim, Norway, pp. 1259–1262 (2005)
Yang, B., Garcia-Molina, H.: Designing a Super-Peer Network. In: Proc. of the IEEE Intl. Conf. on Data Engineering, Bangalore, India, pp. 49–60 (2003)
W3C: XQuery 1.0: An XML Query Language (W3C Candidate Recommendation, November 3, 2005) (2005), http://www.w3.org/TR/xquery/
Rosenkrantz, D.J., Hunt, H.B.: Processing Conjunctive Predicates and Queries. In: Proc. of the Intl. Conf. on Very Large Data Bases, Montreal, Canada, pp. 64–72 (1980)
Arasu, A., Widom, J.: Resource Sharing in Continuous Sliding-Window Aggregates. In: [18], pp. 336–347
Abadi, D.J., Ahmad, Y., Balazinska, M., Çetintemel, U., Cherniack, M., Hwang, J.H., Lindner, W., Maskey, A.S., Rasin, A., Ryvkina, E., Tatbul, N., Xing, Y., Zdonik, S.: The Design of the Borealis Stream Processing Engine. In: Proc. of the Conf. on Innovative Data Systems Research, Asilomar, CA, USA, pp. 277–289 (2005)
Arasu, A., Babcock, B., Babu, S., Datar, M., Ito, K., Motwani, R., Nishizawa, I., Srivastava, U., Thomas, D., Varma, R., Widom, J.: STREAM: The Stanford Stream Data Manager. IEEE Data Engineering Bulletin 26(1), 19–26 (2003)
Chandrasekaran, S., Cooper, O., Deshpande, A., Franklin, M.J., Hellerstein, J.M., Hong, W., Krishnamurthy, S., Madden, S., Raman, V., Reiss, F., Shah, M.A.: TelegraphCQ: Continuous Dataflow Processing for an Uncertain World. In: [19]
Chen, J., DeWitt, D.J., Tian, F., Wang, Y.: NiagaraCQ: A Scalable Continuous Query System for Internet Databases. In: Proc. of the ACM SIGMOD Intl. Conf. on Management of Data, Dallas, TX, USA, pp. 379–390 (2000)
Cherniack, M., Balakrishnan, H., Balazinska, M., Carney, D., Çetintemel, U., Xing, Y., Zdonik, S.B.: Scalable Distributed Stream Processing. In: [19]
Yao, Y., Gehrke, J.: The Cougar Approach to In-Network Query Processing in Sensor Networks. ACM SIGMOD Record 31(3), 9–18 (2002)
Sellis, T.K.: Multiple-Query Optimization. ACM Trans. on Database Systems 13(1), 23–52 (1988)
Madden, S., Shah, M.A., Hellerstein, J.M., Raman, V.: Continuously Adaptive Continuous Queries over Streams. In: Proc. of the ACM SIGMOD Intl. Conf. on Management of Data, Madison, WI, USA, pp. 49–60 (2002)
Krishnamurthy, S., Franklin, M.J., Hellerstein, J.M., Jacobson, G.: The Case for Precision Sharing. In: [18], pp. 972–986
Dong, X., Halevy, A.Y., Tatarinov, I.: Containment of Nested XML Queries. In: [18], pp. 132–143
Kuntschke, R., Stegmaier, B., Kemper, A.: Data Stream Sharing. Technical Report TUM-I0504, Technische Universität München (2005)
Proc. of the Intl. Conf. on Very Large Data Bases, Toronto, Canada (2004)
Proc. of the Conf. on Innovative Data Systems Research, Asilomar, CA, USA (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kuntschke, R., Kemper, A. (2006). Data Stream Sharing. In: Grust, T., et al. Current Trends in Database Technology – EDBT 2006. EDBT 2006. Lecture Notes in Computer Science, vol 4254. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11896548_58
Download citation
DOI: https://doi.org/10.1007/11896548_58
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-46788-5
Online ISBN: 978-3-540-46790-8
eBook Packages: Computer ScienceComputer Science (R0)