On Exact Learning from Random Walk | SpringerLink
Skip to main content

On Exact Learning from Random Walk

  • Conference paper
Algorithmic Learning Theory (ALT 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4264))

Included in the following conference series:

  • 802 Accesses

Abstract

We consider a few particular exact learning models based on a random walk stochastic process, and thus more restricted than the well known general exact learning models. We give positive and negative results as to whether learning in these particular models is easier than in the general learning models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Angluin, D.: Queries and concept learning. Machine Learning 2, 319–342 (1987)

    Google Scholar 

  2. Bshouty, N.H.: Simple Learning Algorithms Using Divide and Conquer. Computational Complexity 6(2), 174–194 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bartlett, P.L., Fischer, P., Höffgen, K.: Exploiting Random Walks for Learning. Information and Computation 176, 121–135 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bshouty, N.H., Mossel, E., O’Donnell, R., Servedio, R.A.: Learning DNF from Random Walks. In: FOCS 2003, page.189 (2003)

    Google Scholar 

  5. Diaconis, P., Graham, R., Morrison, J.: Asymptotic analysis of a random walk on a hypercube with many dimensions. Random Structures and Algorithms 1, 51–72 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  6. Ficher, P., Simon, H.: On learning ring-sum expansions. SIAM J. Comput. 21, 181–192 (1992)

    Article  MathSciNet  Google Scholar 

  7. Hancock, T., Mansour, Y.: Learning Monotone DNF Formulas on Product Distributions. In: Proc. 4th Ann. Workshop on Comp. Learning Theory, pp. 179–183 (1991)

    Google Scholar 

  8. Kearns, M., Li, M., Pitt, L., Valiant, L.: On the Learnability of Boolean Formulae. In: Proceedings of the 19th ACM Symposium on the Theory of Computing, pp. 285–195 (1987)

    Google Scholar 

  9. Littlestone, N.: Learning Quickly When Irrelevant Attributes Abound: A New Linear-Threshold Algorithm. Machine Learning 2(4), 285–318 (1987)

    Google Scholar 

  10. Mossel, E., O’Donnell, R., Servedio, R.A.: Learning juntas. STOC 2003: 206-212. Learning functions of k relevant variables. Journal of Computer and System Sciences 69(3), 421–434 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  11. Pitt, L., Warmuth, M.K.: Prediction-preserving reducibility. Journal of Computer and System Science 41(3), 430–467 (1990)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bshouty, N.H., Bentov, I. (2006). On Exact Learning from Random Walk. In: Balcázar, J.L., Long, P.M., Stephan, F. (eds) Algorithmic Learning Theory. ALT 2006. Lecture Notes in Computer Science(), vol 4264. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11894841_17

Download citation

  • DOI: https://doi.org/10.1007/11894841_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-46649-9

  • Online ISBN: 978-3-540-46650-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics