Abstract
The present paper mainly studies the expected teaching time of memoryless randomized learners without feedback.
First, a characterization of optimal randomized learners is provided and, based on it, optimal teaching teaching times for certain classes are established. Second, the problem of determining the optimal teaching time is shown to be \({{\mathcal N\!P}}\)-hard. Third, an algorithm for approximating the optimal teaching time is given. Finally, two heuristics for teaching are studied, i.e., cyclic teachers and greedy teachers.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Angluin, D., Kriķis, M.: Teachers, learners and black boxes. In: Proc. 10th Ann. Conf. on Comput. Learning Theory, pp. 285–297. ACM Press, New York (1997)
Angluin, D., Kriķis, M.: Learning from different teachers. Machine Learning 51(2), 137–163 (2003)
Anthony, M., Brightwell, G., Cohen, D., Shawe-Taylor, J.: On exact specification by examples. In: Proc. 5th Ann. ACM Works. on Comput. Learning Theory, pp. 311–318. ACM Press, New York (1992)
Balbach, F.J.: Teaching Classes with High Teaching Dimension Using Few Examples. In: Auer, P., Meir, R. (eds.) COLT 2005. LNCS (LNAI), vol. 3559, pp. 668–683. Springer, Heidelberg (2005)
Balbach, F.J., Zeugmann, T.: Teaching randomized learners. In: Lugosi, G., Simon, H.U. (eds.) COLT 2006. LNCS (LNAI), vol. 4005, pp. 229–243. Springer, Heidelberg (2006)
Bertsekas, D.P.: Dynamic Programming and Optimal Control. Athena Sci. (2005)
Blondel, V.D., Canterini, V.: Undecidable problems for probabilistic automata of fixed dimension. Theory of Computing Systems 36(3), 231–245 (2003)
Freivalds, R., Kinber, E.B., Wiehagen, R.: On the power of inductive inference from good examples. Theoret. Comput. Sci. 110(1), 131–144 (1993)
Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, San Francisco (1979)
Goldman, S.A., Kearns, M.J.: On the complexity of teaching. J. of Comput. Syst. Sci. 50(1), 20–31 (1995)
Goldman, S.A., Mathias, H.D.: Teaching a smarter learner. J. of Comput. Syst. Sci. 52(2), 255–267 (1996)
Goldman, S.A., Rivest, R.L., Schapire, R.E.: Learning binary relations and total orders. SIAM J. Comput. 22(5), 1006–1034 (1993)
Jackson, J., Tomkins, A.: A computational model of teaching. In: Proc. 5th Ann. ACM Works. on Comput. Learning Theory, pp. 319–326. ACM Press, New York (1992)
Jain, S., Lange, S., Nessel, J.: On the learnability of recursively enumerable languages from good examples. Theoret. Comput. Sci. 261(1), 3–29 (2001)
Kuhlmann, C.: On Teaching and Learning Intersection-Closed Concept Classes. In: Fischer, P., Simon, H.U. (eds.) EuroCOLT 1999. LNCS (LNAI), vol. 1572, pp. 168–182. Springer, Heidelberg (1999)
Lee, H.K., Servedio, R.A., Wan, A.: DNF Are Teachable in the Average Case. In: Lugosi, G., Simon, H.U. (eds.) COLT 2006. LNCS (LNAI), vol. 4005, pp. 214–228. Springer, Heidelberg (2006)
Madani, O., Hanks, S., Condon, A.: On the undecidability of probabilistic planning and infinite-horizon partially observable markov decision problems. In: Proc. 16th Nat. Conf. on Artificial Intelligence & 11th Conf. on Innovative Applications of Artificial Intelligence, pp. 541–548. AAAI Press/MIT Press (1999)
Mathias, H.D.: A model of interactive teaching. J. of Comput. Syst. Sci. 54(3), 487–501 (1997)
Patek, S.D.: On partially observed stochastic shortest path problems. In: Proc. of the 40-th IEEE Conf. on Decision and Control, pp. 5050–5055 (2001)
Shinohara, A., Miyano, S.: Teachability in computational learning. New Generation Computing 8(4), 337–348 (1991)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Balbach, F.J., Zeugmann, T. (2006). Teaching Memoryless Randomized Learners Without Feedback. In: Balcázar, J.L., Long, P.M., Stephan, F. (eds) Algorithmic Learning Theory. ALT 2006. Lecture Notes in Computer Science(), vol 4264. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11894841_11
Download citation
DOI: https://doi.org/10.1007/11894841_11
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-46649-9
Online ISBN: 978-3-540-46650-5
eBook Packages: Computer ScienceComputer Science (R0)