A Brain-Inspired Cerebellar Associative Memory Approach to Option Pricing and Arbitrage Trading | SpringerLink
Skip to main content

A Brain-Inspired Cerebellar Associative Memory Approach to Option Pricing and Arbitrage Trading

  • Conference paper
Neural Information Processing (ICONIP 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4234))

Included in the following conference series:

  • 2335 Accesses

Abstract

Option pricing is a process to obtain the theoretical fair value of an option based on the factors affecting its price. Currently, the nonparametric and computational methods of option valuation are able to construct a model of the pricing formula from historical data. However, these models are generally based on a global learning paradigm, which may not be able to efficiently and accurately capture the dynamics and time-varying characteristics of the option data. This paper proposes a novel brain-inspired cerebellar associative memory model for pricing American-style option on currency futures. The proposed model, called PSECMAC, constitute a local learning model that is inspired by the neurophysiological aspects of the human cerebellum. The PSECMAC-based option pricing model is subsequently applied in a mis-priced option arbitrage trading system. Simulation results show a return on investment as high as 23.1% for a relatively risk-free investment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Chance, D.M.: An Introduction to Derivatives & Risk Management, 6th edn. Thomson (2004)

    Google Scholar 

  2. Nielsen, L.T.: Pricing and Hedging of Derivative Securities – Textbook in continuous-time finance theory. Oxford University Press, Oxford (1999)

    Google Scholar 

  3. Black, F., Scholes, N.: The pricing of options and corporate liabilities. Journal of Political Economy 81, 637–659 (1973)

    Article  Google Scholar 

  4. Rendleman Jr., R.J., Bartter, B.J.: Two-state option pricing. Journal of Finance 34, 1093–1110 (1979)

    Article  Google Scholar 

  5. Radzikowski, P.: Non-parametric methods of option pricing. In: Proc. of Informs-Korms (Seoul 2000 conference), pp. 474–480 (2000)

    Google Scholar 

  6. Amilon, H.: A neural network versus black-scholes: A comparison of pricing and hedging performances. Scandinavian Working Papers in Economics, Lund University series, Department of economics, Lund, Sweden (2001)

    Google Scholar 

  7. Anders, U., Korn, O., Schmitt, C.: Improving the pricing of options - a neural network approach. Journal of Forecasting 17(5–6), 369–388 (1998)

    Article  Google Scholar 

  8. Qi, M., Maddala, G.S.: Option-pricing using artificial neural networks: the case of s&p500 index call options. Neural Networks in Financial Engineering, 78–92 (1995)

    Google Scholar 

  9. Hutchinson, J., Lo, A., Poggio, T.: A nonparametric approach to pricing and hedging derivative securities via learning networks. Journal of Finance 49, 851–889 (1994)

    Article  Google Scholar 

  10. Keber, C.: Option pricing with the genetic programming approach. Journal of Computational Intelligence in Finance 7(6), 26–36 (1999)

    Google Scholar 

  11. Ait-Sahalia, Y., Lo, A.W.: Nonparametric estimation of state-price densities implicit in financial asset price. LFE-1024-95, MIT-Sloan School of Management (1995)

    Google Scholar 

  12. Tung, W.L., Quek, C.: GenSo-OPATS: A brain-inspired dynamically evolving option pricing model and arbitrage trading system. In: Proc. IEEE CEC 2005, Edinburgh, Scotland, vol. 3, pp. 2429–2436 (2005)

    Google Scholar 

  13. Huang, K., Yang, H., King, I., Lyu, M.: Local learning vs. global learning: An introduction to maxi-min margin machine. In: Wang, L. (ed.) Support Vector Machines: Theory and Applications, vol. 177, pp. 113–132. Springer, Heidelberg (2005)

    Google Scholar 

  14. Bottou, L., Vapnik, V.: Local learning algorithms. Neural Computation 4, 888–900 (1992)

    Article  Google Scholar 

  15. Kandel, E.R., Schwartz, J.H., Jessell, T.M.: Principles of Neural Science, 4th edn. McGraw-Hill, New York (2000)

    Google Scholar 

  16. Middleton, F.A., Strick, P.L.: The cerebellum: An overview. Trends in Cognitive Sciences 27(9), 305–306 (1998)

    Article  Google Scholar 

  17. Albus, J.S.: Marr and Albus theories of the cerebellum two early models of associative memory. In: Proc. IEEE Compcon (1989)

    Google Scholar 

  18. Albus, J.S.: A new approach to manipulator control: The Cerebellar Model Articulation Controller (CMAC). J. Dyn. Syst. Meas. Control, Trans. ASME, 220–227 (1975)

    Google Scholar 

  19. Albus, J.S.: Data storage in Cerebellar Model Articullation Controller (CMAC). J. Dyn. Syst. Meas. Control, Trans. ASME, 228–233 (1975)

    Google Scholar 

  20. Yamamoto, T., Kaneda, M.: Intelligent controller using CMACs with self-organized structure and its application for a process system. IEICE Trans. Fundamentals 82(5), 856–860 (1999)

    Google Scholar 

  21. Commuri, S., Jagannathan, S., Lewis, F.L.: CMAC neural network control of robot manipulators. J. Robot Syst. 14(6), 465–482 (1997)

    Article  MATH  Google Scholar 

  22. Ang, K., Quek, C.: Stock trading using PSEC and RSPOP: A novel evolving rough set-based neuro-fuzzy approach. IEEE Congress on Evolutionary Computation (2005)

    Google Scholar 

  23. Federmeier, K.D., Kleim, J.A., Greenough, W.T.: Learning-induces multiple synapse formation in rat cerebellar cortex. Neuroscience Letters 332, 180–184 (2002)

    Article  Google Scholar 

  24. Teddy, S.D., Quek, C., Lai, E.M.K.: Psecmac: A brain-inspired multi resolution cerebellar learning memory model. Neural Computation (under review, 2006)

    Google Scholar 

  25. Widrow, B., Stearns, S.D.: Adaptive Signal Processing. Prentice-Hall, Englewood Cliffs (1985)

    MATH  Google Scholar 

  26. Chicago Mercantile Exchange, U. Online, http://www.cme.com

  27. Gencay, R.: The predictability of security returns with simple trading rules. Journal of Empirical Finance 5(4), 347–359 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Teddy, S.D., Lai, E.M.K., Quek, C. (2006). A Brain-Inspired Cerebellar Associative Memory Approach to Option Pricing and Arbitrage Trading. In: King, I., Wang, J., Chan, LW., Wang, D. (eds) Neural Information Processing. ICONIP 2006. Lecture Notes in Computer Science, vol 4234. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11893295_42

Download citation

  • DOI: https://doi.org/10.1007/11893295_42

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-46484-6

  • Online ISBN: 978-3-540-46485-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics