New Results for Global Stability of Cohen-Grossberg Neural Networks with Discrete Time Delays | SpringerLink
Skip to main content

New Results for Global Stability of Cohen-Grossberg Neural Networks with Discrete Time Delays

  • Conference paper
Neural Information Processing (ICONIP 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4232))

Included in the following conference series:

Abstract

This paper studies the global convergence properties of Cohen-Grossberg neural networks with discrete time delays. Without assuming the symmetry of interconnection weight coefficients, and the monotonicity and differentiability of activation functions, and by employing Lyapunov functionals, we derive new delay independent sufficient conditions under which a delayed Cohen-Grossberg neural network converges to a globally asymptotically stable equilibrium point. Some examples are given to illustrate the advantages of the results over the previously reported results in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cohen, M.A., Grossberg, S.: Absolute stability and global pattern formation and parallel memory storage by competitive neural networks. IEEE Trans. Systems, Man and Cybernetics 13, 815–821 (1983)

    MATH  MathSciNet  Google Scholar 

  2. Ye, H., Michel, A.N., Wang, K.: Qualitative analysis of Cohen-Grossberg neural networks with multiple delays. Physical Review E 51, 2611–2618 (1995)

    Article  MathSciNet  Google Scholar 

  3. Forti, M., Tesi, A.: New conditions for global stability of neural networks with applications to linear and quadratic programming problems. IEEE Trans. Circuits Syst. I 42(7), 354–365 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  4. Arik, S., Tavsanoglu, V.: Equilibrium analysis of delayed CNNs. IEEE Trans. Circuits and Syst. I 45, 168–171 (1998)

    Article  MathSciNet  Google Scholar 

  5. Arik, S., Tavsanoglu, V.: On the global asymptotic stability of delayed cellular neural networks. IEEE Trans. Circuits and Syst. I 47(5), 571–574 (2000)

    Article  MATH  Google Scholar 

  6. Liao, T.-L., Wang, F.-C.: Global stability for cellular neural networks with time delay. IEEE Trans. on Neural Networks 11, 1481–1485 (2000)

    Article  Google Scholar 

  7. Takahashi, N.: A new sufficient condition for complete stability of cellular neural networks with delay. IEEE Trans. Circuits and Syst. I 47, 793–799 (2000)

    Article  Google Scholar 

  8. Yi, Z., Heng, P.A., Leung, K.S.: Convergence Analysis of Delayed Cellular Neural Networks with Unbounded Delay. IEEE Trans. on Circuits and Syst. I 48, 680–687 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  9. Huang, H., Cao, J., Wang, J.: Global exponential stability and periodic solutions of recurrent neural networks with delays. Physics Letters A 298, 393–404 (2002)

    MATH  MathSciNet  Google Scholar 

  10. Sun, C., Zhang, K., Fei, S., Feng, C.B.: On exponential stability of delayed neural networks with a general class of activation functions. Physics Letters A 298, 122–132 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  11. Hwang, C.C., Cheng, C.J., Liao, T.L.: Globally exponential stability of generalized Cohen-Grossberg neural networks with delays. Physics Letters A 319, 157–166 (2003)

    Article  MATH  Google Scholar 

  12. Xiaong, W., Cao, J.: Absolutely exponential stability of CohenGrossberg neural networks with unbounded delays. Neurocomputing 68, 1–12 (2005)

    Article  Google Scholar 

  13. Arik, S., Tavsanoglu, V.: Global asymptotic stability analysis of bidirectional associative memory neural networks with constant time delays. Neurocomputing 68, 161–176 (2005)

    Article  Google Scholar 

  14. Arik, S., Orman, Z.: Global stability analysis of CohenGrossberg neural networks with time varying delays. Physics Letters A 341, 410–421 (2005)

    Article  MATH  Google Scholar 

  15. Liao, X., Li, C.: An LMI approach to asymptotical stability of multi-delayed neural networks. Physica D: Nonlinear Phenomena 200, 139–155 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  16. Sun, J., Wan, L.: Global exponential stability and periodic solutions of CohenGrossberg neural networks with continuously distributed delays. Physica D: Nonlinear Phenomena 208, 1–20 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  17. He, Y., Wang, Q.G., Wu, M.: LMI-based stability criteria for neural networks with multiple time-varying delays. Physica D: Nonlinear Phenomena 212, 126–136 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  18. Cao, J., Li, X.: Stability in delayed CohenGrossberg neural networks: LMI optimization approach. Physica D: Nonlinear Phenomena 212, 54–65 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  19. Liao, X., Li, C., Wong, K.: Criteria for exponential stability of Cohen-Grossberg neural networks. Neural Networks 17, 1401–1414 (2004)

    Article  MATH  Google Scholar 

  20. Liu, J.: Global exponential stability of Cohen-Grossberg neural networks with timevarying delays. Chaos Solitons and Fractals 26, 935–945 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  21. Khalil, H.K.: Nonlinear Systems. Mcmillan Publishing Company, New York (1988)

    Google Scholar 

  22. Horn, R.A., Johnson, C.R.: Topics in Matrix Analyis. Cambridge University Press, Cambridge (1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Orman, Z., Arik, S. (2006). New Results for Global Stability of Cohen-Grossberg Neural Networks with Discrete Time Delays. In: King, I., Wang, J., Chan, LW., Wang, D. (eds) Neural Information Processing. ICONIP 2006. Lecture Notes in Computer Science, vol 4232. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11893028_64

Download citation

  • DOI: https://doi.org/10.1007/11893028_64

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-46479-2

  • Online ISBN: 978-3-540-46480-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics