Actor Based Video Indexing and Retrieval Using Visual Information | SpringerLink
Skip to main content

Actor Based Video Indexing and Retrieval Using Visual Information

  • Conference paper
Advances in Natural Computation (ICNC 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4222))

Included in the following conference series:

  • 954 Accesses

Abstract

Content-based video indexing and retrieval algorithms are presented in this paper that aim at temporally indexing a video sequence according to actors. Our system splits a video into a sequence of a few representative frames. We use color information and then SGLD matrix on the representative frames for face region detection. Detected faces are used to build a face database. We construct eigen faces applying PCA on the faces in the face database for extracting important features. Extracted features are then used in MPM for identifying the input face from the training faces. Experimental result shows that our approach can correctly recognize 95.3% and 90.84% of the faces from the AT&T face database and video sequence respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Rosenfeld, A., et al.: Video Mining. Kluwer Academic Publishers, Dordrecht (2003)

    Google Scholar 

  2. Yeung, M., et al.: Segmentation of Video by Clustering and Graph Analysis. Computer Vision and Image Understanding 71(1), 94–109 (1998)

    Article  Google Scholar 

  3. Wang, H., et al.: A Highly Efficient system for Automatic Face Region Detection in MPEG Video. IEEE Transactions on Circuit and Systems for Video Technology 7(4), 615–628 (1997)

    Article  Google Scholar 

  4. Li, Y., et al.: Video Content Analysis using Multimodal Information. Kluwer Academic Publishers, Dordrecht (2003)

    Google Scholar 

  5. Yang, M.-H., et al.: Detecting Faces in Images: A Survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(1), 34–58 (2002)

    Article  Google Scholar 

  6. Dai, Y., Nakano, Y.: Face-Texture Model Based On SGLD And Its Application in Face Detection in a Color Scene. Pattern Recognition 29(6), 1007–1017 (1996)

    Article  Google Scholar 

  7. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. Wiley-Interscience, Chichester (2001)

    MATH  Google Scholar 

  8. Breiman, Friedman, et al.: Classification And Regression Trees. CRC Press, Boca Raton (1998)

    Google Scholar 

  9. http://www.uk.research.att.com

  10. Zhang, J., Yong, Y., Lades, M.: Face recognition: eigenface, elastic matching, and neural nets. Proc. of the IEEE 85, 1423–1435 (1997)

    Article  Google Scholar 

  11. Vapnik, V.N.: Statistical Learning Theory. Wiley, Chichester (1998)

    MATH  Google Scholar 

  12. Phillips: Support vector machines applied to face recognition. In: Proc. Advances in Neural Information Processing Systems (1998)

    Google Scholar 

  13. Lankriet, G.R.G., El Ghaoui, L., Bhattacharyya, C., Jordan, M.I.: Minimax Probability Machine. In: Proc. Advances in Neural Information Processing Systems (2002)

    Google Scholar 

  14. Lankriet, G.R.G., El Ghaoui, L., Bhattacharyya, C., Jordan, M.I.: A robust minimax approach to classification. Journal of Machine Learning Research 3, 552–582 (2002)

    Google Scholar 

  15. Marshall, W., Olkin, I.: Multivariate chyshev inequalities. Annuals of Mathematcal statistics 31(4), L1001–L1014 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  16. Popescu, Bertsimas, D.: Optimal inequalities in probability theory: A convex optimization approach. Technical Report TM62, INSEAD, Dept. math. O.R., Cambridge, Mass. (2001)

    Google Scholar 

  17. Lanckriet, G.R.G., El Ghaoui, L., Bhattacharyya, C., Jordan, M.I.: A robust minimax approach to classification. Journal of Machine Learning Research 3, 552–582 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Islam, M.K., Lee, ST., Baek, JH. (2006). Actor Based Video Indexing and Retrieval Using Visual Information. In: Jiao, L., Wang, L., Gao, X., Liu, J., Wu, F. (eds) Advances in Natural Computation. ICNC 2006. Lecture Notes in Computer Science, vol 4222. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11881223_61

Download citation

  • DOI: https://doi.org/10.1007/11881223_61

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-45907-1

  • Online ISBN: 978-3-540-45909-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics