Semi-continuous Sized Types and Termination | SpringerLink
Skip to main content

Semi-continuous Sized Types and Termination

  • Conference paper
Computer Science Logic (CSL 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4207))

Included in the following conference series:

Abstract

A type-based approach to termination uses sized types: an ordinal bound for the size of a data structure is stored in its type. A recursive function over a sized type is accepted if it is visible in the type system that recursive calls occur just at a smaller size. This approach is only sound if the type of the recursive function is admissible, i.e., depends on the size index in a certain way. To explore the space of admissible functions in the presence of higher-kinded data types and impredicative polymorphism, a semantics is developed where sized types are interpreted as functions from ordinals into sets of strongly normalizing terms. It is shown that upper semi-continuity of such functions is a sufficient semantical criterion for admissibility. To provide a syntactical criterion, a calculus for semi-continuous function is developed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abel, A.: Termination and guardedness checking with continuous types. In: Hofmann, M.O. (ed.) TLCA 2003. LNCS, vol. 2701, pp. 1–15. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  2. Abel, A.: Termination checking with types. RAIRO – Theoretical Informatics and Applications 38, 277–319 (2004) (Special Issue: Fixed Points in Computer Science (FICS 2003))

    Article  MATH  MathSciNet  Google Scholar 

  3. Abel, A.: Polarized subtyping for sized types. In: Grigoriev, D., Harrison, J., Hirsch, E.A. (eds.) CSR 2006. LNCS, vol. 3967, pp. 381–392. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  4. Abel, A.: A Polymorphic Lambda-Calculus with Sized Higher-Order Types. Ph.D. thesis, Ludwig-Maximilians-Universität München (2006)

    Google Scholar 

  5. Abel, A., Matthes, R.: Fixed points of type constructors and primitive recursion. In: Marcinkowski, J., Tarlecki, A. (eds.) CSL 2004. LNCS, vol. 3210, pp. 190–204. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  6. Amadio, R.M., Coupet-Grimal, S.: Analysis of a guard condition in type theory. In: Nivat, M. (ed.) FOSSACS 1998. LNCS, vol. 1378, pp. 48–62. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  7. Barthe, G., Frade, M.J., Giménez, E., Pinto, L., Uustalu, T.: Type-based termination of recursive definitions. Mathematical Structures in Computer Science 14, 1–45 (2004)

    Article  Google Scholar 

  8. Barthe, G., Grégoire, B., Pastawski, F.: Practical inference for type-based termination in a polymorphic setting. In: Urzyczyn, P. (ed.) TLCA 2005. LNCS, vol. 3461, pp. 71–85. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  9. Blanqui, F.: A type-based termination criterion for dependently-typed higher-order rewrite systems. In: van Oostrom, V. (ed.) RTA 2004. LNCS, vol. 3091, pp. 24–39. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  10. Blanqui, F.: Decidability of type-checking in the Calculus of Algebraic Constructions with size annotations. In: Ong, L. (ed.) CSL 2005. LNCS, vol. 3634, pp. 135–150. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  11. Crary, K., Weirich, S.: Flexible type analysis. In: Proceedings of the Fourth ACM SIGPLAN International Conference on Functional Programming (ICFP 1999), Paris, France. SIGPLAN Notices, vol. 34, pp. 233–248. ACM Press, New York (1999)

    Chapter  Google Scholar 

  12. Duggan, D., Compagnoni, A.: Subtyping for object type constructors. In: FOOL 6 (1999)

    Google Scholar 

  13. Giménez, E.: Structural recursive definitions in type theory. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp. 397–408. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  14. Hughes, J., Pareto, L., Sabry, A.: Proving the correctness of reactive systems using sized types. In: 23rd Symposium on Principles of Programming Languages, POPL 1996, pp. 410–423 (1996)

    Google Scholar 

  15. Mendler, N.P.: Recursive types and type constraints in second-order lambda calculus. In: Proceedings of the Second Annual IEEE Symposium on Logic in Computer Science, Ithaca, NY, pp. 30–36. IEEE Computer Society Press, Los Alamitos (1987)

    Google Scholar 

  16. Pareto, L.: Types for Crash Prevention. Ph.D. thesis, Chalmers University of Technology (2000)

    Google Scholar 

  17. Paulin-Mohring, C.: Inductive definitions in the system Coq—rules and properties. Technical report, Laboratoire de l’Informatique du Parallélisme (1992)

    Google Scholar 

  18. Steffen, M.: Polarized Higher-Order Subtyping. Ph.D. thesis, Technische Fakultät, Universität Erlangen (1998)

    Google Scholar 

  19. Xi, H.: Dependent types for program termination verification. In: Proceedings of 16th IEEE Symposium on Logic in Computer Science, Boston, USA (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Abel, A. (2006). Semi-continuous Sized Types and Termination. In: Ésik, Z. (eds) Computer Science Logic. CSL 2006. Lecture Notes in Computer Science, vol 4207. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11874683_5

Download citation

  • DOI: https://doi.org/10.1007/11874683_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-45458-8

  • Online ISBN: 978-3-540-45459-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics