Abstract
In [8] J. Laird has shown that an infinitary sequential extension of PCF has a fully abstract model in his category of locally boolean domains (introduced in [10] ). In this paper we introduce an extension SPCF ∞ of his language by recursive types and show that it is universal for its model in locally boolean domains.
Finally we consider an infinitary target language CPS ∞ for (the) CPS translation (of[18] ) and show that it is universal for a model in locally boolean domains which is constructed like Dana Scott’s D ∞ where \(D = \{\bot,\top\}\).
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Abramsky, S., Jagadeesan, R., Malacaria, P.: Full abstraction for PCF. Inf. Comput. 163(2), 409–470 (2000)
Amadio, R.M., Curien, P.-L.: Domains and lambda-calculi. Cambridge University Press, New York (1998)
Asperti, A.: Stability and computability in coherent domains. Inf. Comput. 86(2), 115–139 (1990)
Barendregt, H.P.: The Lambda Calculus - its syntax and semantics. North-Holland, Amsterdam (1981) (1984)
Cartwright, R., Curien, P.-L., Felleisen, M.: Fully abstract models of observably sequential languages. Information and Computation 111(2), 297–401 (1994)
Harmer, R., McCusker, G.: A fully abstract game semantics for finite nondeterminism. In: LICS, pp. 422–430 (1999)
Hyland, J.M.E., Ong, C.-H.L.: On full abstraction for PCF: I. models, observables and the full abstraction problem, ii. dialogue games and innocent strategies, iii. a fully abstract and universal game model. Information and Computation 163, 285–408 (2000)
Laird, J.: Bistable biorders: a sequential domain theory (submitted, 2005)
Laird, J.: A semantic analysis of control. PhD thesis, University of Edinburgh (1998)
Laird, J.: Locally boolean domains. Theoretical Computer Science 342, 132–148 (2005)
Loader, R.: Finitary PCF is not decidable. Theor. Comput. Sci. 266(1-2), 341–364 (2001)
Longley, J.: The sequentially realizable functionals. Ann. Pure Appl. Logic 117(1-3), 1–93 (2002)
Löw, T.: Locally Boolean Domains and Curien-Lamarche Games. PhD thesis, Technical University of Darmstadt (in prepration, 2006), preliminary version available from: http://www.mathematik.tu-darmstadt.de/~loew/lbdclg.pdf
Maurel, F.: Un cadre quantitatif pour la Ludique. PhD thesis, Université Paris 7, Paris (2004)
O’Hearn, P.W., Riecke, J.G.: Kripke logical relations and PCF. Information and Computation 120(1), 107–116 (1995)
Pitts, A.M.: Relational properties of domains. Information and Computation 127(2), 66–90 (1996)
Plotkin, G.D.: Lectures on predomains and partial functions. Course notes, Center for the Study of Language and Information, Stanford (1985)
Reus, B., Streicher, T.: Classical logic, continuation semantics and abstract machines. J. Funct. Prog. 8(6), 543–572 (1998)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Löw, T., Streicher, T. (2006). Universality Results for Models in Locally Boolean Domains. In: Ésik, Z. (eds) Computer Science Logic. CSL 2006. Lecture Notes in Computer Science, vol 4207. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11874683_30
Download citation
DOI: https://doi.org/10.1007/11874683_30
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-45458-8
Online ISBN: 978-3-540-45459-5
eBook Packages: Computer ScienceComputer Science (R0)