Universality Results for Models in Locally Boolean Domains | SpringerLink
Skip to main content

Universality Results for Models in Locally Boolean Domains

  • Conference paper
Computer Science Logic (CSL 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4207))

Included in the following conference series:

Abstract

In [8] J. Laird has shown that an infinitary sequential extension of PCF has a fully abstract model in his category of locally boolean domains (introduced in [10] ). In this paper we introduce an extension SPCF  ∞  of his language by recursive types and show that it is universal for its model in locally boolean domains.

Finally we consider an infinitary target language CPS  ∞  for (the) CPS translation (of[18] ) and show that it is universal for a model in locally boolean domains which is constructed like Dana Scott’s D  ∞  where \(D = \{\bot,\top\}\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abramsky, S., Jagadeesan, R., Malacaria, P.: Full abstraction for PCF. Inf. Comput. 163(2), 409–470 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  2. Amadio, R.M., Curien, P.-L.: Domains and lambda-calculi. Cambridge University Press, New York (1998)

    MATH  Google Scholar 

  3. Asperti, A.: Stability and computability in coherent domains. Inf. Comput. 86(2), 115–139 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  4. Barendregt, H.P.: The Lambda Calculus - its syntax and semantics. North-Holland, Amsterdam (1981) (1984)

    MATH  Google Scholar 

  5. Cartwright, R., Curien, P.-L., Felleisen, M.: Fully abstract models of observably sequential languages. Information and Computation 111(2), 297–401 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  6. Harmer, R., McCusker, G.: A fully abstract game semantics for finite nondeterminism. In: LICS, pp. 422–430 (1999)

    Google Scholar 

  7. Hyland, J.M.E., Ong, C.-H.L.: On full abstraction for PCF: I. models, observables and the full abstraction problem, ii. dialogue games and innocent strategies, iii. a fully abstract and universal game model. Information and Computation 163, 285–408 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  8. Laird, J.: Bistable biorders: a sequential domain theory (submitted, 2005)

    Google Scholar 

  9. Laird, J.: A semantic analysis of control. PhD thesis, University of Edinburgh (1998)

    Google Scholar 

  10. Laird, J.: Locally boolean domains. Theoretical Computer Science 342, 132–148 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  11. Loader, R.: Finitary PCF is not decidable. Theor. Comput. Sci. 266(1-2), 341–364 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  12. Longley, J.: The sequentially realizable functionals. Ann. Pure Appl. Logic 117(1-3), 1–93 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  13. Löw, T.: Locally Boolean Domains and Curien-Lamarche Games. PhD thesis, Technical University of Darmstadt (in prepration, 2006), preliminary version available from: http://www.mathematik.tu-darmstadt.de/~loew/lbdclg.pdf

  14. Maurel, F.: Un cadre quantitatif pour la Ludique. PhD thesis, Université Paris 7, Paris (2004)

    Google Scholar 

  15. O’Hearn, P.W., Riecke, J.G.: Kripke logical relations and PCF. Information and Computation 120(1), 107–116 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  16. Pitts, A.M.: Relational properties of domains. Information and Computation 127(2), 66–90 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  17. Plotkin, G.D.: Lectures on predomains and partial functions. Course notes, Center for the Study of Language and Information, Stanford (1985)

    Google Scholar 

  18. Reus, B., Streicher, T.: Classical logic, continuation semantics and abstract machines. J. Funct. Prog. 8(6), 543–572 (1998)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Löw, T., Streicher, T. (2006). Universality Results for Models in Locally Boolean Domains. In: Ésik, Z. (eds) Computer Science Logic. CSL 2006. Lecture Notes in Computer Science, vol 4207. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11874683_30

Download citation

  • DOI: https://doi.org/10.1007/11874683_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-45458-8

  • Online ISBN: 978-3-540-45459-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics