Mathematical Analysis of “Phase Ramping” for Super-Resolution Magnetic Resonance Imaging | SpringerLink
Skip to main content

Mathematical Analysis of “Phase Ramping” for Super-Resolution Magnetic Resonance Imaging

  • Conference paper
Image Analysis and Recognition (ICIAR 2006)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4141))

Included in the following conference series:

Abstract

Super-resolution image processing algorithms are based on the principle that repeated imaging together with information about the acquisition process may be used to enhance spatial resolution. In the usual implementation, a series of low-resolution images shifted by typically subpixel distances are acquired. The pixels of these low-resolution images are then interleaved and modeled as a blurred image of higher resolution and the same field-of-view. A high-resolution image is then obtained using a standard deconvolution algorithm. Although this approach has been applied in magnetic resonance imaging (MRI), some controversy has surfaced regarding the validity and circumstances under which super-resolution may be applicable. We investigate the factors that limit the applicability of super-resolution MRI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Borman, S., Stevenson, R.: Spatial resolution enhancement of low-resolution image sequences - a review. In: Proceedings of the 1998 Midwest Symposium on Circuits and Systems, Notre Dame IN (1998)

    Google Scholar 

  2. Bracewell, R.: The Fourier Transform and its Applications, 2nd edn. McGraw-Hill, New York (1978)

    MATH  Google Scholar 

  3. Chaudhuri, S. (ed.): Super-Resolution Imaging. Kluwer Academic Publishers, Dordrecht (2001)

    Google Scholar 

  4. Gerchberg, R.W.: Super-resolution through Error Energy Reduction. Optica Acta 21(9), 709–720 (1974)

    Google Scholar 

  5. Greenspan, H., Peled, S., Oz, G., Kiryati, N.: MRI inter-slice reconstruction using super-resolution. In: Niessen, W.J., Viergever, M.A. (eds.) MICCAI 2001. LNCS, vol. 2208, p. 1204. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  6. Greenspan, H., Oz, G., Kiryati, N., Peled, S.: MRI inter-slice reconstruction using super-resolution. Magnetic Resonance Imaging 20, 437–446 (2002)

    Article  Google Scholar 

  7. Haacke, M.E., Mitchell, J., Doohi, L.: Improved Contrast at 1.5 Tesla Using Half-Fourier Imaging: Application to Spin-Echo and Angiographic Imaging. Magnetic Resonance Imaging 8, 79–90 (1990)

    Article  Google Scholar 

  8. Haacke, M.E., Lindskog, E.D., Lin, W.: A Fast, Iterative, Partial-Fourier Technique Capable of Local Phase Recovery. Journal of Magnetic Resonance 92, 126–145 (1991)

    Google Scholar 

  9. Haacke, M.E., Brown, R.W., Thompson, M.R., Venkatesan, R.: Magnetic Resonance Imaging: Physical Principles and Sequence Design. John Wiley & Sons, Inc., USA (1999)

    Google Scholar 

  10. Hinshaw, W., Lent, A.: An Introduction to NMR Imaging: From the Bloch Equation to the Imaging Equation. Proceedings of the IEEE 71(3), 338–350 (1983)

    Article  Google Scholar 

  11. Irani, M., Peleg, S.: Motion analysis for image enhancement: resolution, occlusion, and transparency. Journal of Visual Communication and Image Representation 4(4), 324–335 (1993)

    Article  Google Scholar 

  12. Jain, A., Ranganath, S.: Extrapolation Algorithms for Discrete Signals with Application in Spectral Estimation. IEEE Transactions on Acoustics, Speech, and Signal Processing ASSP-29(4), 830–845 (1981)

    Article  MathSciNet  Google Scholar 

  13. Kornprobst, P., Peeters, R., Nikolova, M., Deriche, R., Ng, M., Hecke, P.V.: A superresolution framework for fMRI sequences and its impact on resulting activation maps. In: Ellis, R.E., Peters, T.M. (eds.) MICCAI 2003. LNCS, vol. 2879, pp. 117–125. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  14. Liang, Z., Boada, F.E., Constable, R.T., Haacke, M.E., Lauterbur, P.C., Smith, M.R.: Constrained Reconstruction Methods in MR Imaging. Reviews of Magnetic Resonance in Medicine 4, 67–185 (1992)

    Google Scholar 

  15. Liang, Z., Lauterbur, P.C.: Principles of Magnetic Resonance Imaging, A Signal Processing Perspective. IEEE Press, New York (2000)

    Google Scholar 

  16. Margosian, P., Schmitt, F.: Faster MR Imaging: Imaging with Half the Data. Heath Care Instrumentation 1, 195–197 (1986)

    Google Scholar 

  17. Mayer, G.S.: Synthetic Aperture MRI. M.Sc. Thesis, The University of Calgary (2003)

    Google Scholar 

  18. McGibney, G., Smith, M.R., Nichols, S.T., Crawley, A.: Quantitative Evaluation of Several Partial Fourier Reconstruction Algorithms Used in MRI. Magnetic Resonance in Medicine 30, 51–59 (1993)

    Article  Google Scholar 

  19. Ng, K.P., Deriche, R., Kornprobst, P., Nikolova, M.: Half-Quadratic Regularization for MRI Image Restoration. In: IEEE Signal Processing Conference, pp. 585–588 (2003) (Publication No. : 76681)

    Google Scholar 

  20. Papoulis, A.: A New Algorithm in Spectral Analysis and Band-Limited Extrapolation. IEEE Transactions on Circuits and Systems CAS-22(9), 735–742 (1975)

    Article  MathSciNet  Google Scholar 

  21. Peeters, R., et al.: The Use of Super-Resolution Techniques to Reduce Slice Thickness in Functional MRI. International Journal of Imaging Systems and Technology 14, 131–138 (2004)

    Article  Google Scholar 

  22. Peled, S., Yeshurun, Y.: Superresolution in MRI: Application to Human White Matter Fiber Tract Visualization by Diffusion Tensor Imaging. Magnetic Resonance in Medicine 45, 29–35 (2001)

    Article  Google Scholar 

  23. Peled, S., Yeshurun, Y.: Superresolution in MRI - Perhaps Sometimes. Magnetic Resonance in Medicine 48, 409 (2002)

    Article  Google Scholar 

  24. Sanz, J., Huang, T.: Discrete and Continuous Band-Limited Signal Extrapolation. IEEE Transactions on Acoustics, Speech, and Signal Processing ASSP-31(5), 1276–1285 (1983)

    Article  Google Scholar 

  25. Sanz, J., Huang, T.: Some Aspects of Band-Limited Signal Extrapolation: Models, Discrete Approximations, and Noise. IEEE Transactions on Acoustics, Speech, and Signal Processing ASSP-31(6), 1492–1501 (1983)

    Article  Google Scholar 

  26. Sabri, M.S., Steenaart, W.: An Approach to Band-Limited Signal Extrapolation: The Extrapolation Matrix. IEEE Transactions on Circuits and Systems CAS-25(2) (1978)

    Google Scholar 

  27. Scheffler, K.: Superresolution in MRI? Magnetic Resonance in Medicine 48, 408 (2002)

    Article  Google Scholar 

  28. Tsai, R., Huang, T.: Multiframe image restoration and registration. In: Advances in Computer Vision and Image Processing, vol. 1, pp. 317–339. JAI Press Inc., Greenwich (1984)

    Google Scholar 

  29. Youla, D.: Generalized Image Restoration by the Method of Alternating Orthogonal Projections. IEEE Transactions on Circuits and Systems CAS-25(9) (1978)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mayer, G.S., Vrscay, E.R. (2006). Mathematical Analysis of “Phase Ramping” for Super-Resolution Magnetic Resonance Imaging. In: Campilho, A., Kamel, M.S. (eds) Image Analysis and Recognition. ICIAR 2006. Lecture Notes in Computer Science, vol 4141. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11867586_8

Download citation

  • DOI: https://doi.org/10.1007/11867586_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44891-4

  • Online ISBN: 978-3-540-44893-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics