A Discontinuous Finite Element Method for Image Denoising | SpringerLink
Skip to main content

A Discontinuous Finite Element Method for Image Denoising

  • Conference paper
Image Analysis and Recognition (ICIAR 2006)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4141))

Included in the following conference series:

  • 1601 Accesses

Abstract

Discontinuous finite element methods are powerful mathematical tools for solving partial differential equations with discontinuous solutions. In this paper such a method is presented to denoise digital images, while preserving discontinuous image patterns like edges and corners. This method is theoretically superior to the commonly used anisotropic diffusion approach in many aspects such as convergence and robustness. Denoising experiments are provided to demonstrate the effectiveness of this method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aubert, G., Kornprobst, P.: Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations. Applied Mathematical Sciences, vol. 147. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  2. Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Analysis and Machine Intelligence 12, 629–639 (1990)

    Article  Google Scholar 

  3. Sapiro, G.: Geometric Partial Differential Equations and Image Analysis. Cambridge University Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  4. Tschumperle, D., Deriche, R.: Vector-valued image regularization with PDE’s: A common framework for different applications. IEEE Trans. Pattern Analysis and Machine Intelligence 27, 506–517 (2005)

    Article  Google Scholar 

  5. Cockburn, B., Karniadakis, G., Shu, C.W. (eds.): Discontinuous Galerkin Methods: Theory, Computation and Applications. Springer, New York (2000)

    MATH  Google Scholar 

  6. Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992)

    Article  MATH  Google Scholar 

  7. Bathe, K.J.: Finite Element Procedures. Prentice-Hall, Englewood Cliffs (1996)

    Google Scholar 

  8. Reed, W.H., Hill, T.R.: Triangular mesh methods for the neutron transport equation. Technical Report LA-UR-73-479, Los Alamos Scientific Laboratory, Los Alamos, NM (1973)

    Google Scholar 

  9. Douglas, J., Dupont, T.: Interior penalty procedures for elliptic and parabolic Galerkin methods, Berlin. Lecture Notes in Phys., vol. 58. Springer, Heidelberg (1976)

    Google Scholar 

  10. Arnold, D.N.: An Interior Penalty Finite Element Method with Discontinuous Elements. Ph.D thesis, The University of Chicago, Chicago, IL (1979)

    Google Scholar 

  11. Arnold, D.N., Brezzi, F., Cockburn, B., Martin, L.D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numerical Analysis 39, 1749–1779 (2002)

    Article  MATH  Google Scholar 

  12. Rivière, B., Wheeler, M.F., Girault, V.: A priori error estimates for finite element methods based on discontinuous approximation spaces for elliptic problems. SIAM J. Numerical Analysis 39, 902–931 (2001)

    Article  MATH  Google Scholar 

  13. Castillo, P.: Performance of discontinuous Galerkin methods for elliptic PDE’s. SIAM J. Scientific Computing 24, 524–547 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. George, P.L.: Automatic triangulation. Wiley & Sons, New York (1996)

    Google Scholar 

  15. Davis, T.A.: Algorithm 8xx: UMFPACK v4.1, an unsymmetric-pattern multifrontal method TOMS (2003), http://www.cise.ufl.edu/research/sparse/umfpack

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, Z., Qi, F., Zhou, F. (2006). A Discontinuous Finite Element Method for Image Denoising. In: Campilho, A., Kamel, M.S. (eds) Image Analysis and Recognition. ICIAR 2006. Lecture Notes in Computer Science, vol 4141. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11867586_11

Download citation

  • DOI: https://doi.org/10.1007/11867586_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44891-4

  • Online ISBN: 978-3-540-44893-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics