A Neural Model in Intrusion Detection Systems | SpringerLink
Skip to main content

A Neural Model in Intrusion Detection Systems

  • Conference paper
Artificial Neural Networks – ICANN 2006 (ICANN 2006)

Abstract

The paper proposes the use of the multilayer perceptron model to the problem of detecting attack patterns in computer networks. The multilayer perceptron is trained and assessed on patterns extracted from the files of the Third International Knowledge Discovery and Data Mining Tools Competition. It is required to classify novel normal patterns and novel categories of attack patterns. The results are presented and evaluated in the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press, Oxford (1995)

    Google Scholar 

  2. Haykin, S.: Neural Networks: A Comprehensive Foundation, 2nd edn. Prentice-Hall, Inc., Englewood Cliffs (1999)

    MATH  Google Scholar 

  3. Debar, H., Dacier, M., Wespi, A.: Towards a taxonomy of intrusion-detection systems. Computer Networks 31, 805–822 (1999)

    Article  Google Scholar 

  4. Biermann, E., Cloete, E., Venter, L.M.: A comparison of intrusion detection systems. Computers & Security 20, 676–683 (2001)

    Article  Google Scholar 

  5. Bai, Y., Kobayashi, H.: Intrusion detection systems: technology and development. In: Proceedings of the 17th International Conference on Advanced Information Networking and Applications. IEEE, Los Alamitos (2003)

    Google Scholar 

  6. Durst, R., Champion, T., Witten, B., Miller, E., Spagnuolo, L.: Testing and evaluating computer intrusion detection systems. Communications of the ACM 42, 53–61 (1999)

    Article  Google Scholar 

  7. Lippmann, R., Haines, J.W., Fried, D.J., Korba, J., Das, K.: The 1999 DARPA off-line intrusion detection evaluation. Computer Networks 34, 579–595 (2000)

    Article  Google Scholar 

  8. Champion, T., Denz, M.L.: A benchmark evaluation of network intrusion detection systems. In: Proceedings of the Aerospace Conference. IEEE, Los Alamitos (2001)

    Google Scholar 

  9. Lee, S.C., Heinbuch, D.V.: Training a neural-network based intrusion detector to recognize novel attacks. IEEE Transactions on Systems, Man, and Cybernetics —Part A: Systems and Humans 31, 294–299 (2001)

    Article  Google Scholar 

  10. Jiang, J., Zhang, C., Kamel, M.: RBF-Based real-time hierarchical intrusion detection systems. In: Proceedings of the International Joint Conference on Neural Networks. IEEE, Los Alamitos (2003)

    Google Scholar 

  11. Joo, D., Hong, T., Han, I.: The neural network models for IDS based on the asymmetric costs of false negative errors and false positive errors. Expert Systems with Applications 25, 69–75 (2003)

    Article  Google Scholar 

  12. Zhang, C., Jiang, J., Kamel, M.: Intrusion detection using hierarchical neural networks. Pattern Recognition Letters 26, 779–791 (2005)

    Article  Google Scholar 

  13. Internet web page: KDD Cup 1999 Data. University of California, Irvine (1999), http://www.ics.uci.edu/~kdd/databases/kddcup99/kddcup99.html

  14. Internet web page: KDD Cup 1999 Data. University of California, Irvine (1999), http://www.ics.uci.edu/~kdd/databases/kddcup99/task.html

  15. Fahlman, S.E.: An empirical study of learning speed in back-propagation networks. Technical Report CMU-CS-88-162, School of Computer Science—Carnegie Mellon University, Pittsburgh, PA (1988)

    Google Scholar 

  16. Rumelhart, D.E., Hinton, G.E., McClelland, J.L.: A general framework for parallel distributed processing. In: Rumelhart, D.E., McClelland, J.L., The PDP Research Group (eds.) Parallel Distributed Processing, vol. 1, pp. 45–76. The MIT Press, Cambridge (1986)

    Google Scholar 

  17. Cabrera, J.B.D., Mehra, R.K.: Control and estimation methods in information assurance — a tutorial on intrusion detection systems. In: Proceedings of the 41st Conference on Decision and Control. IEEE, Los Alamitos (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Carpinteiro, O.A.S., Netto, R.S., Lima, I., de Souza, A.C.Z., Moreira, E.M., Pinheiro, C.A.M. (2006). A Neural Model in Intrusion Detection Systems. In: Kollias, S., Stafylopatis, A., Duch, W., Oja, E. (eds) Artificial Neural Networks – ICANN 2006. ICANN 2006. Lecture Notes in Computer Science, vol 4132. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11840930_89

Download citation

  • DOI: https://doi.org/10.1007/11840930_89

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-38871-5

  • Online ISBN: 978-3-540-38873-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics