Abstract
In this paper we derive a novel smooth component analysis algorithm applied for prediction improvement. When many prediction models are tested we can treat their results as multivariate variable with the latent components having constructive or destructive impact on prediction results. The filtration of those destructive components and proper mixing of those constructive should improve final prediction results. The filtration process can be performed by neural networks with initial weights computed from smooth component analysis. The validity and high performance of our concept is presented on the real problem of energy load prediction.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Breiman, L.: Bagging predictors. Machine Learning 24, 123–140 (1996)
Bishop, C.M.: Neural networks for pattern recognition. Oxford Univ. Press, UK (1996)
Choi, S., Cichocki, A.: Blind separation of nonstationary sources in noisy mixtures. Electronics Letters 36(9), 848–849 (2000)
Cichocki, A., Amari, S.: Adaptive Blind Signal and Image Processing. John Wiley, Chichester (2002)
Cichocki, A., Zurada, J.M.: Blind Signal Separation and Extraction: Recent Trends, Future Perspectives, and Applications. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 30–37. Springer, Heidelberg (2004)
Donoho, D.L., Elad, M.: Maximal Sparsity Repre-sentation via l1 Minimization. The Proc. Nat. Aca. Sci. 100, 2197–2202 (2003)
Haykin, S.: Neural networks: a comprehensive foundation. Macmillan, New York (1994)
Hoeting, J., Mdigan, D., Raftery, A., Volinsky, C.: Bayesian model averaging: a tutorial. Statistical Science 14, 382–417 (1999)
Hurst, H.E.: Long term storage capacity of reservoirs. Trans. Am. Soc. Civil Engineers 116 (1951)
Hyvärinen, A., Karhunen, J., Oja, E.: Independent Component Analysis. John Wiley, Chichester (2001)
Lendasse, A., Cottrell, M., Wertz, V., Verdleysen, M.: Prediction of Electric Load using Kohonen Maps – Application to the Polish Electricity Consumption. In: Proc. Am. Control Conf., Anchorage AK, pp. 3684–3689 (2002)
Lee, D.D., Seung, H.S.: Learning of the parts of objects by non-negative matrix factorization. Nature 401 (1999)
Li, Y., Cichocki, A., Amari, S.: Sparse component analysis for blind source separation with less sensors than sources. In: Fourth Int. Symp. on ICA and Blind Signal Separation, Nara, Japan, pp. 89–94 (2003)
Mitchell, T.: Machine Learning. McGraw-Hill, Boston (1997)
Molgedey, L., Schuster, H.: Separation of a mixture of independent signals using time delayed correlations. Phisical Review Letters 72(23) (1994)
Osowski, S., Siwek, K.: Regularization of neural networks for improved load forecasting in the power system. IEE Proc. Generation, Transmission and Distribution 149(3), 340–344 (2002)
Parra, L., Mueller, K.R., Spence, C., Ziehe, A., Sajda, P.: Unmixing Hyperspectral Data. Advances in Neural In formation Processing Systems 12, pp. 942–948. MIT Press, Cambridge (2000)
Samorodnitskij, G., Taqqu, M.: Stable non-Gaussian random processes: stochastic models with infinitive variance. Chapman and Hall, N.York (1994)
Scales, L.E.: Introduction to Non-Linear Optimization. Springer, New York (1985)
Stone, J.V.: Blind Source Separation Using Temporal Predictability. Neural Computation 13(7), 1559–1574 (2001)
Szupiluk, R., Wojewnik, P., Zabkowski, T.: Model Improvement by the Statistical Decomposition. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 1199–1204. Springer, Heidelberg (2004)
Therrien, C.W.: Discrete Random Signals and Statistical Signal Processing. Prentice Hall, New Jersey (1992)
Yang, Y.: Adaptive regression by mixing. Journal of American Statistical Association 96 (2001)
Zibulevsky, M., Kisilev, P., Zeevi, Y.Y., Pearlmutter, B.A.: Blind source separation via multinode sparse representation. In: Advances in Neural Information Processing Systems, vol. 14, pp. 185–191 (2002)
Cichocki, A., Zdunek, R., Amari, S.: New Algorithms for Non-Negative Matrix Factorization in Applications to Blind Source Separation. In: IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2006, Toulouse, France (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Szupiluk, R., Wojewnik, P., Ząbkowski, T. (2006). Prediction Improvement via Smooth Component Analysis and Neural Network Mixing. In: Kollias, S., Stafylopatis, A., Duch, W., Oja, E. (eds) Artificial Neural Networks – ICANN 2006. ICANN 2006. Lecture Notes in Computer Science, vol 4132. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11840930_14
Download citation
DOI: https://doi.org/10.1007/11840930_14
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-38871-5
Online ISBN: 978-3-540-38873-9
eBook Packages: Computer ScienceComputer Science (R0)