Abstract
The embryonic nervous system is refined over the course of development as a result of two main processes: apoptosis (programmed cell death) and selective axon pruning. We simulated a large scale spiking neural network characterized by an initial apoptotic phase, driven by an excessive firing rate, followed by the onset of spike-timing-dependent plastiticity (STDP), driven by spatiotemporal patterns of stimulation. In the apoptotic phase the cell death affected the inhibitory more than the excitatory units. The network activity stabilized such that recurrent preferred firing sequences appeared along the STDP phase, thus suggesting the emergence of cell assemblies from large randomly connected networks.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aghajanian, G.K., Bloom, F.E.: The formation of synaptic junctions in developing rat brain: A quantitative electron microscopic study. Brain Research 6(4), 716–727 (1967)
Bi, G.Q., Poo, M.M.: Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J. Neurosci. 18, 10464–10472 (1998)
Bourgeois, J., Rakic, P.: Changes of synaptic density in the primary visual cortex of the macaque monkey from fetal to adult stage. Journal of Neuroscience 13, 2801–2820 (1993)
Chechik, G., Meilijson, I., Ruppin, E.: Neuronal Regulation: A Mechanism for Synaptic Pruning During Brain Maturation. Neural Computation 11, 2061–2080 (1999)
Eriksson, J., Torres, O., Mitchell, A., Tucker, G., Lindsay, K., Rosenberg, J., Moreno, J.-M., Villa, A.E.P.: Spiking Neural Networks for Reconfigurable POEtic Tissue. In: Tyrrell, A.M., Haddow, P.C., Torresen, J. (eds.) ICES 2003. LNCS, vol. 2606, pp. 165–174. Springer, Heidelberg (2003)
Huttenlocher, P.R.: Synaptic density in human frontal cortex – Developmental changes and effects of aging. Brain Research 163(2), 195–205 (1979)
Iglesias, J., Eriksson, J., Grize, F., Marco, T., Villa, A.E.P.: Dynamics of Pruning in Simulated Large-Scale Spiking Neural Networks. Biosystems 79, 11–20 (2005)
Iglesias, J., Eriksson, J., Pardo, B., Tomassini, M., Villa, A.E.P.: Stimulus-Driven Unsupervised Pruning in Large Neural Networks. In: De Gregorio, M., Di Maio, V., Frucci, M., Musio, C. (eds.) BVAI 2005. LNCS, vol. 3704, pp. 59–68. Springer, Heidelberg (2005)
Innocenti, G.M.: Exuberant development of connections, and its possible permissive role in cortical evolution. Trends in Neurosciences 18(9), 397–402 (1995)
Izhikevich, E.M., Gally, J.A., Edelman, G.M.: Spike-timing Dynamics of Neuronal Groups. Cerebral Cortex 14, 933–944 (2004)
Karmarkar, U.R., Buonomano, D.V.: A model of spike-timing dependent plasticity: one or two coincidence detectors? J. Neurophysiol. 88, 507–513 (2002)
Moreno, J.M., Eriksson, J.L., Iglesias, J., Villa, A.E.P.: Implementation of Biologically Plausible Spiking Neural Networks Models on the POEtic Tissue. In: Moreno, J.M., Madrenas, J., Cosp, J. (eds.) ICES 2005. LNCS, vol. 3637, pp. 188–197. Springer, Heidelberg (2005)
Rakic, P., Bourgeois, J.P., Eckenhoff, M.F., Zecevic, N., Goldman-Rakic, P.S.: Concurrent overproduction of synapses in diverse regions of the primate cerebral cortex. Science 232, 232–235 (1986)
Song, S., Abbott, L.F.: Cortical Development and Remapping through Spike Timing-Dependent Plasticity. Neuron 32, 339–350 (2001)
Song, S., Sjöström, P.J., Reigl, M., Nelson, S., Chklovskii, D.B.: Highly Nonrandom Features of Synaptic Connectivity in Local Cortical Circuits. PLoS Biology 3(3), 507–519 (2005)
Tetko, I.V., Villa, A.E.: A pattern grouping algorithm for analysis of spatiotemporal patterns in neuronal spike trains. 1. Detection of repeated patterns. Journal of Neuroscience Methods 105, 1–14 (2001)
Villa, A.E.P.: Empirical Evidence about Temporal Structure in Multi-unit Recordings. In: Miller, R. (ed.) Time and the Brain, vol. 1, pp. 1–51. Harwood Academic Publishers, England (2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Iglesias, J., Villa, A.E.P. (2006). Neuronal Cell Death and Synaptic Pruning Driven by Spike-Timing Dependent Plasticity. In: Kollias, S.D., Stafylopatis, A., Duch, W., Oja, E. (eds) Artificial Neural Networks – ICANN 2006. ICANN 2006. Lecture Notes in Computer Science, vol 4131. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11840817_99
Download citation
DOI: https://doi.org/10.1007/11840817_99
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-38625-4
Online ISBN: 978-3-540-38627-8
eBook Packages: Computer ScienceComputer Science (R0)