Abstract
This paper presents an on-line training procedure for a hierarchical neural network of integrate-and-fire neurons. The training is done through synaptic plasticity and changes in the network structure. Event driven computation optimizes processing speed in order to simulate networks with large number of neurons. The training procedure is applied to the face recognition task. Preliminary experiments on a public available face image dataset show the same performance as the optimized off-line method. A comparison with other classical methods of face recognition demonstrates the properties of the system.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Fukushima, K.: Active Vision: Neural Network Models. In: Amari, S., Kasabov, N. (eds.) Brain-like Computing and Intelligent Information Systems. Springer, Heidelberg (1997)
Mel, B.W.: SEEMORE: Combining colour, shape, and texture histrogramming in a neu-rally-inspired approach to visual object recognition. Neural Computation 9, 777–804 (1998)
Wiskott, L., Fellous, J.M., Krueuger, N., von der Malsburg, C.: Face Recognition by Elastic Bunch Graph Matching. In: Jain, L.C., et al. (eds.) Intelligent Biometric Techniques in Fingerprint and Face Recognition, pp. 355–396. CRC Press, Boca Raton (1999)
Haykin, S.: Neural Networks - A Comprehensive Foundation. Prentice-Hall, Englewood Cliffs (1999)
Bishop, C.: Neural Networks for Pattern Recognition. University Press, Oxford (2000)
Gerstner, W., Kistler, W.M.: Spiking Neuron Models. Cambridge Univ. Press, Cambridge (2002)
Delorme, A., Thorpe, S.: Face identification using one spike per neuron: resistance to image degradation. Neural Networks 14, 795–803 (2001)
Delorme, A., Gautrais, J., van Rullen, R., Thorpe, S.: SpikeNet: a simulator for modeling large networks of integrate and fire neurons. Neurocomputing 26-27, 989–996 (1999)
Delorme, A., Perrinet, L., Thorpe, S.: Networks of integrate-and-fire neurons using Rank Order Coding. Neurocomputing, 38–48 (2001)
Thorpe, S., Gaustrais, J.: Rank Order Coding. In: Bower, J. (ed.) Computational Neuro-science: Trends in Research. Plenum Press, New York (1998)
Hubel, D.H., Wiesel, T.N.: Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J. Physiol 160, 106–154 (1962)
Mattia, M., del Giudice, P.: Efficient Event-Driven Simulation of Large Networks of Spiking Neurons and Dynamical Synapses. Neural Computation 12(10), 2305–2329 (2000)
Kasabov, N.: Evolving Connectionist Systems: Methods and Applications in Bioinformatics, Brain Study and Intelligent Machines. Springer, Heidelberg (2002)
http://www.cl.cam.ac.uk/Research/DTG/attarchive/facedatabase.html
Sonka, M., Hlavac, V., Boyle, R.: Image Processing, Analysis, and Machine Vision, 2nd edn (1998)
Sharpee, T., et al.: Adaptive filtering enhances information transmission in visual cortex. Nature 439, 936–942 (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Wysoski, S.G., Benuskova, L., Kasabov, N. (2006). On-Line Learning with Structural Adaptation in a Network of Spiking Neurons for Visual Pattern Recognition. In: Kollias, S.D., Stafylopatis, A., Duch, W., Oja, E. (eds) Artificial Neural Networks – ICANN 2006. ICANN 2006. Lecture Notes in Computer Science, vol 4131. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11840817_7
Download citation
DOI: https://doi.org/10.1007/11840817_7
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-38625-4
Online ISBN: 978-3-540-38627-8
eBook Packages: Computer ScienceComputer Science (R0)