Abstract
In this paper we propose alternative methods to parameter selection techniques in order to build a kernel matrix for classification purposes using Support Vector Machines (SVMs). We describe several methods to build a unique kernel matrix from a collection of kernels built using a wide range of values for the unkown parameters. The proposed techniques have been successfully evaluated on a variety of artificial and real data sets. The new methods outperform the best individual kernel under consideration and they can be used as an alternative to the parameter selection problem in kernel methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bousquet, O., Herrmann, D.J.L.: On the complexity of learning the kernel matrix. In: Becker, S., Thurn, S., Obermayer, K. (eds.) Advances in Neural Information Processing Systems, 15, pp. 415–422. The MIT Press, Cambridge (2003)
Chapelle, O., Vapnik, V., Bousquet, O., Mukherjee, S.: Choosing multiple parameters for support vector machines. Machine Learning 46(1/3), 131–159 (2002)
Cristianini, N., Shawe-Taylor, J., Elisseeff, A., Kandola, J.: On Kernel-Target Alignment, pp. 367–373. MIT Press, Cambridge (2002)
Gower, J.C., Legendre, P.: Metric and euclidean properties of dissimilarity coefficients. Journal of Classification 3, 5–48 (1986)
Keerthi, S.S., Lin, C.: Asymptotic behaviors of support vector machines with gaussian kernel. Neural Computation 15, 1667–1689 (2003)
Lanckriet, G.R.G., Cristianini, N., Barlett, P., El Ghaoui, L., Jordan, M.I.: Learning the kernel matrix with semi-definite programming. Journal of Machine Learning Research 5, 27–72 (2004)
Lee, J.-H., Lin, C.-J.: Automatic model selection for support vector machines. Technical report, National Taiwan University (2000)
Lehmann, E.L.: NonParametrics: Statistical Methods Based on Ranks. McGraw- Hill, New York (1975)
Mangasarian, O.L., Wolberg, W.H.: Cancer diagnosis via linear programming. SIAM News 23(5), 1–18 (1990)
Moguerza, J.M., de Diego, I.M., Muñoz, A.: Improving support vector classificacion via the combination of multiple sources of information. In: Fred, A., Caelli, T.M., Duin, R.P.W., Campilho, A.C., de Ridder, D. (eds.) SSPR&SPR 2004. LNCS, vol. 3138, pp. 592–600. Springer, Heidelberg (2004)
Pękalska, E., Duin, R.P.W., Günter, S., Bunke, H.: On not making dissimilarities euclidean. In: Fred, A., Caelli, T.M., Duin, R.P.W., Campilho, A.C., de Ridder, D. (eds.) SSPR&SPR 2004. LNCS, vol. 3138, pp. 1145–1154. Springer, Heidelberg (2004)
Pȩkalska, E., Paclík, P., Duin, R.P.W.: A generalized kernel approach to dissimilarity-based classification. Journal of Machine Learning Research, Special Issue on Kernel Methods 2(12), 175–211 (2001)
Schittkowski, K.: Optimal parameter selection in support vector machines. Journal of Industrial and Management Optimization 1(4), 465–476 (2005)
Schölkopf, B., Mika, S., Burges, C.J.C., Müller, K.-R., Knirsch, P., Rätsch, G., Smola, A.J.: Input space vs. feature space in kernel-based methods. IEEE Transactions on Neural Networks (1999)
Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge University Press, Cambridge (2004)
Silverman, B.: Density Estimation for Statistics and Data Analysis. Chapman and Hall, London (1986)
Vandenberghe, L., Boyd, S.: Semidefinite programming. SIAM Review 38(1), 49–95 (1996)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Muñoz, A., de Diego, I.M.n., Moguerza, J.M. (2006). Alternatives to Parameter Selection for Kernel Methods. In: Kollias, S.D., Stafylopatis, A., Duch, W., Oja, E. (eds) Artificial Neural Networks – ICANN 2006. ICANN 2006. Lecture Notes in Computer Science, vol 4131. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11840817_23
Download citation
DOI: https://doi.org/10.1007/11840817_23
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-38625-4
Online ISBN: 978-3-540-38627-8
eBook Packages: Computer ScienceComputer Science (R0)