Abstract
DNA molecules have been assembled in rigid DX and TX molecules, arrayed in assemblies similar to Wang tiles, and, as flexible branched junction molecules with flexible arms have been used in assemblies representing arbitrary graphs. This paper considers both models of rigid and flexible tiles. A model representing complexes assembled out of rigid tiles based on tile displacements is presented. This presentation is used to simulate computations obtained from (bounded) rigid tile self-assembly by corresponding assemblies of flexible tiles.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Cambridge Structural Database, Cambridge Crystallographic Data Centre, on-line at: http://www.ccdc.cam.ac.uk/
Carbone, A., Seeman, N.C.: Molecular tiling and DNA self-assembly. In: Jonoska, N., Păun, G., Rozenberg, G. (eds.) Aspects of Molecular Computing. LNCS, vol. 2950, pp. 61–83. Springer, Heidelberg (2003)
Desiraju, G.R.: Crystal Engineering: the Design of Organic Solids. Elsevier, Amsterdam (1989)
Foster, M.D., Treacy, M.M.J., Higgins, J.B., Rivin, I., Balkovsky, E., Randall, K.H.: A systematic topological search for the framework of ZSM-10. J. Appl. Crystallography 38, 1028–1030 (2005), http://www.hypotheticalzeolites.net/
Jonoska, N., Sa-Ardyen, P., Seeman, N.C.: Computation by self-assembly of DNA graphs. Genetic Programming and Evolvable Machines 4, 123–137 (2003)
Jonoska, N., Liao, S., Seeman, N.C.: Transducers with Programmable Input by DNA Self-assembly. In: Jonoska, N., Păun, G., Rozenberg, G. (eds.) Aspects of Molecular Computing. LNCS, vol. 2950, pp. 219–240. Springer, Heidelberg (2003)
Jonoska, N., Karl, S., Saito, M.: Three dimensional DNA structures in computing. BioSystems 52, 143–153 (1999)
Jonoska, N., McColm, G.L.: A Computational Model for Self-assembling Flexible Tiles. In: Calude, C.S., Dinneen, M.J., Păun, G., Jesús Pérez-Jímenez, M., Rozenberg, G. (eds.) UC 2005. LNCS, vol. 3699, pp. 142–156. Springer, Heidelberg (2005)
Jonoska, N., McColm, G.L.: From rigid tiles to flexible and back (in preparation)
Rothemund, P., Papadakis, N., Winfree, E.: Algorithmic Self-assembly of DNA Sierpinski Triangles. PLoS Biology 2(12) (2004), available at: http://biology.plosjournals.org/
Rothemund, P.W.K., Winfree, E.: The Program-Size Complexity of Self-Assembled Squares. In: Proceedings of 33rd ACM meeting STOC 2001, Portland, Oregon, May 21-23, pp. 459–468 (2001)
Sa-Ardyen, P., Jonoska, N., Seeman, N.: Self-assembling DNA graphs. Natural Computing 2(4), 427–438 (2003)
Service, R.F.: How Far Can We Push Chemical Self-Assembly? Science 309(5731), 95 (2005)
Winfree, E.: Self healing tile sets. In: Chen, J., Jonoska, N., Rozenberg, G. (eds.) Nanotechnology: Science and Computation, pp. 55–74. Springer, Heidelberg (2005)
Winfree, E., Yang, X., Seeman, N.C.: Universal computation via self-assembly of DNA: some theory and experiments. In: Landweber, L., Baum, E. (eds.) DNA based computers II. AMS DIMACS, vol. 44, pp. 191–214 (1998)
Winfree, E., Liu, F., Wenzler, L.A., Seeman, N.C.: Design and self-assembly of two-dimensional DNA crystals. Nature 394, 539–544 (1998)
Zaworotko, M.J.: Superstructural diversity in two dimensions: crystal engineering of laminated solids. Chemical Communications (1), 1–9 (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Jonoska, N., McColm, G.L. (2006). Flexible Versus Rigid Tile Assembly. In: Calude, C.S., Dinneen, M.J., Păun, G., Rozenberg, G., Stepney, S. (eds) Unconventional Computation. UC 2006. Lecture Notes in Computer Science, vol 4135. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11839132_12
Download citation
DOI: https://doi.org/10.1007/11839132_12
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-38593-6
Online ISBN: 978-3-540-38594-3
eBook Packages: Computer ScienceComputer Science (R0)