A Mathematica Notebook for Computing the Homology of Iterated Products of Groups | SpringerLink
Skip to main content

A Mathematica Notebook for Computing the Homology of Iterated Products of Groups

  • Conference paper
Mathematical Software - ICMS 2006 (ICMS 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4151))

Included in the following conference series:

Abstract

Let G be a group which admits the structure of an iterated product of central extensions and semidirect products of abelian groups G i (both finite and infinite). We describe a Mathematica 4.0 notebook for computing the homology of G, in terms of some homological models for the factor groups G i and the products involved. Computational results provided by our program have allowed the simplification of some of the formulae involved in the calculation of H n (G). Consequently the efficiency of the method has been improved as well. We include some executions and examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Álvarez, V.: http://mathworld.wolfram.com/HomologyIteratedGroups.html (to appear, 2006)

  2. Álvarez, V., Armario, J.A., Frau, M.D., Real, P.: A genetic algorithm for cocyclic Hadamard matrices. In: Fossorier, M.P.C., Imai, H., Lin, S., Poli, A. (eds.) AAECC 2006. LNCS, vol. 3857, pp. 144–153. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  3. Álvarez, V., Armario, J.A., Frau, M.D., Real, P.: (Co)homology of iterated products of semidirect products of abelian groups. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2006. LNCS, vol. 4194. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  4. Álvarez, V., Armario, J.A., Frau, M.D., Real, P.: Comparison maps for relatively free resolutions. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2006. LNCS, vol. 4194, pp. 1–22. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  5. Carlson, J.: http://www.math.uga.edu/~jfc/

  6. Dousson, X., Rubio, J., Sergeraert, F., Siret, Y.: The KENZO program. Institute Fourier, Grenoble (1998), http://www-fourier.ujf-grenoble.fr/~sergeraert/Kenzo/

  7. Dumas, J.G., Heckenbach, F., Saunders, D., Welker, V.: Computing simplicial homology based on efficient smith normal form algorithms. In: Algebra, Geometry and Software Systems, pp. 177–204. Springer, Heidelberg (2003)

    Google Scholar 

  8. Eilenberg, S., Mac Lane, S.: On the groups H(π, n) II. Annals of Math 66, 49–139 (1954)

    Article  MathSciNet  Google Scholar 

  9. The GAP group, GAP- Group, Algorithms and programming, School of Mathematical and Computational Sciences, University of St. Andrews, Scotland (1998)

    Google Scholar 

  10. Grabmeier, J., Lambe, L.A.: Computing Resolutions Over Finite p-Groups. In: Betten, A., Kohnert, A., Lave, R., Wassermann, A. (eds.) Proceedings ALCOMA 1999. Lecture Notes in Computational Science and Engineering. Springer, Heidelberg (2000)

    Google Scholar 

  11. Ellis, G.: GAP package HAP, Homological Algebra Programming, http://hamilton.nuigalway.ie/Hap/www/

  12. Huebschmann, J.: Cohomology of nilpotent groups of class 2. J. Algebra 126, 400–450 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  13. Huebschmann, J.: Cohomology of metacyclic groups. Transactions of the American Mathematical Society 328(1), 1–72 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  14. Jabon, D.: http://mathworld.wolfram.com/SmithNormalForm.html (1994)

  15. Lambe, L.A.: Algorithms for the homology of nilpotent groups. In: Conf. on applications of computers to Geom. and Top., Lecture Notes in Pure and Applied Math., vol. 114, Marcel Dekker Inc., N.Y (1989)

    Google Scholar 

  16. Lambe, L.A.: Homological perturbation theory, Hochschild homology and formal groups. In: Proc. Conference on Deformation Theory and Quantization with Applications to Physics, Amherst, MA, June 1990. Cont. Math, vol. 134, pp. 183–218 (1992)

    Google Scholar 

  17. Lambe, L.A., Stasheff, J.D.: Applications of perturbation theory to iterated fibrations. Manuscripta Math. 58, 367–376 (1987)

    Article  MathSciNet  Google Scholar 

  18. The MAGMA computational algebra system, http://magma.maths.usyd.edu.au

  19. Real, P.: Homological Perturbation Theory and Associativity. Homology, Homotopy and Applications 2, 51–88 (2000)

    MATH  MathSciNet  Google Scholar 

  20. Rubio, J.: Integrating functional programming and symbolic computation. Mathematics and computers in simulation 44, 505–511 (1997)

    Article  MathSciNet  Google Scholar 

  21. Sergeraert, F.: The computability problem in Algebraic Topology. In: Advances in Math., vol. 1104, pp. 1–29 (1994)

    Google Scholar 

  22. Veblen, O.: Analisis situs, vol. 5. A.M.S. Publications, Providence, RI (1931)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Álvarez, V., Armario, J.A., Frau, M.D., Real, P. (2006). A Mathematica Notebook for Computing the Homology of Iterated Products of Groups. In: Iglesias, A., Takayama, N. (eds) Mathematical Software - ICMS 2006. ICMS 2006. Lecture Notes in Computer Science, vol 4151. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11832225_5

Download citation

  • DOI: https://doi.org/10.1007/11832225_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-38084-9

  • Online ISBN: 978-3-540-38086-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics