A Heuristic Detector Generation Algorithm for Negative Selection Algorithm with Hamming Distance Partial Matching Rule | SpringerLink
Skip to main content

A Heuristic Detector Generation Algorithm for Negative Selection Algorithm with Hamming Distance Partial Matching Rule

  • Conference paper
Artificial Immune Systems (ICARIS 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4163))

Included in the following conference series:

Abstract

Negative selection algorithm is one of the most important algorithms inspired by biological immune system. In this paper, a heuristic detector generation algorithm for negative selection algorithm is proposed when the partial matching rule is Hamming distance. Experimental results show that this novel detector generation algorithm has a better performance than traditional detector generation algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hart, E., Timmis, J.I.: Application Areas of AIS: The Past, The Present and The Future. In: Jacob, C., Pilat, M.L., Bentley, P.J., Timmis, J.I. (eds.) ICARIS 2005. LNCS, vol. 3627, pp. 483–497. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  2. Dasgupta, D., Ji, Z., et al.: Artificial Immune System(AIS) Research in the Last Five Years. In: Proc. the IEEE Congress on Evolutionary Computation (CEC), Canberra, Australia, pp. 123–130 (2003)

    Google Scholar 

  3. de Castro, L.N., Timmis, J.: Artificial Immune Systems: a New Computational Intelligence Approach. Springer, London (2002)

    MATH  Google Scholar 

  4. Taraknaov, A.O., Skormin, V.A., Sokolova, S.P.: Immunocomputing: Principles and Applications. Springer, Heidelberg (2003)

    Google Scholar 

  5. Forrest, S., Perelson, A.S., Allen, L., Cherukuri, R.: Self-nonself Discrimination in a Computer. In: Proc. the 1994 IEEE Symposium on Research in Security and Privacy, Los Alamitos, CA, pp. 202–212 (1994)

    Google Scholar 

  6. Ayara, M., Timmis, J., de Lemos, L.N., de Castro, R., Duncan, R.: Negative Selection: How to Generate Detectors. In: Timmis, J., Bentley, P.J. (eds.) Proc. the First International Conference on Artificial Immune Systems, pp. 89–98 (2002)

    Google Scholar 

  7. D’haeseleer, P., Forrest, S., Helman, P.: An Immunological Approach to Change Detection: Algorithms, Analysis and Implications. In: Proc. the 1996 IEEE Symposium on Security and Privacy, Los Alamitos, CA, pp. 110–119 (1996)

    Google Scholar 

  8. Balthrop, J., Esponda, F., Forrest, S., Glickman, M.: Coverage and Generatization in an Artificial Immune System. In: Proc. the 2002 Genetic and Evolutionary Computation Conference, pp. 3–10 (2002)

    Google Scholar 

  9. Ji, Z., Dasgupata, D.: Augmented Negative Selection Algorithm with Variable-Coverage Detectors. In: Proc. Congress on Evolutionary Computation, CEC, vol. 1, pp. 1081–1088 (2004)

    Google Scholar 

  10. Ji, Z., Dasgupata, D.: Real-Valued Negative Selection Algorithm with Variable-Sized Detectors. In: Proc. the 2004 Genetic and Evolutionary Computation Conference, Seattle, Washington, USA, pp. 287–298 (2004)

    Google Scholar 

  11. Stibor, T., Bayarou, K.M., Eckert, C.: An Investigation of R-Chunk Detector Generation on Higher Alphabets. In: Deb, K., et al. (eds.) GECCO 2004. LNCS, vol. 3102, pp. 299–307. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  12. Stibor, T., Mohr, P., Timmis, J., Eckert, C.: Is Negative Selection Appropriate for Anomaly Detection? In: Proc. the 2005 Genetic and Evolutionary Computation Conference (GECCO), Washington DC, USA, pp. 321–328. ACM Press, New York (2005)

    Chapter  Google Scholar 

  13. Luo, W., Wang, X., et al.: Evolutionary Negative Selection Algorithms for Anomaly Detection. In: Proc. the 8th Joint Conference on Information Sciences (JCIS 2005). 7th International Conference on Computational Intelligence and Natural Computing (CINC 2005), held in conjunction with the 8th Joint Conference on Information Sciences (JCIS 2005), Salt Lake City, Utah, pp. 440–445 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Luo, W., Zhang, Z., Wang, X. (2006). A Heuristic Detector Generation Algorithm for Negative Selection Algorithm with Hamming Distance Partial Matching Rule. In: Bersini, H., Carneiro, J. (eds) Artificial Immune Systems. ICARIS 2006. Lecture Notes in Computer Science, vol 4163. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11823940_18

Download citation

  • DOI: https://doi.org/10.1007/11823940_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-37749-8

  • Online ISBN: 978-3-540-37751-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics