Abstract
Negative selection algorithm is one of the most important algorithms inspired by biological immune system. In this paper, a heuristic detector generation algorithm for negative selection algorithm is proposed when the partial matching rule is Hamming distance. Experimental results show that this novel detector generation algorithm has a better performance than traditional detector generation algorithm.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Hart, E., Timmis, J.I.: Application Areas of AIS: The Past, The Present and The Future. In: Jacob, C., Pilat, M.L., Bentley, P.J., Timmis, J.I. (eds.) ICARIS 2005. LNCS, vol. 3627, pp. 483–497. Springer, Heidelberg (2005)
Dasgupta, D., Ji, Z., et al.: Artificial Immune System(AIS) Research in the Last Five Years. In: Proc. the IEEE Congress on Evolutionary Computation (CEC), Canberra, Australia, pp. 123–130 (2003)
de Castro, L.N., Timmis, J.: Artificial Immune Systems: a New Computational Intelligence Approach. Springer, London (2002)
Taraknaov, A.O., Skormin, V.A., Sokolova, S.P.: Immunocomputing: Principles and Applications. Springer, Heidelberg (2003)
Forrest, S., Perelson, A.S., Allen, L., Cherukuri, R.: Self-nonself Discrimination in a Computer. In: Proc. the 1994 IEEE Symposium on Research in Security and Privacy, Los Alamitos, CA, pp. 202–212 (1994)
Ayara, M., Timmis, J., de Lemos, L.N., de Castro, R., Duncan, R.: Negative Selection: How to Generate Detectors. In: Timmis, J., Bentley, P.J. (eds.) Proc. the First International Conference on Artificial Immune Systems, pp. 89–98 (2002)
D’haeseleer, P., Forrest, S., Helman, P.: An Immunological Approach to Change Detection: Algorithms, Analysis and Implications. In: Proc. the 1996 IEEE Symposium on Security and Privacy, Los Alamitos, CA, pp. 110–119 (1996)
Balthrop, J., Esponda, F., Forrest, S., Glickman, M.: Coverage and Generatization in an Artificial Immune System. In: Proc. the 2002 Genetic and Evolutionary Computation Conference, pp. 3–10 (2002)
Ji, Z., Dasgupata, D.: Augmented Negative Selection Algorithm with Variable-Coverage Detectors. In: Proc. Congress on Evolutionary Computation, CEC, vol. 1, pp. 1081–1088 (2004)
Ji, Z., Dasgupata, D.: Real-Valued Negative Selection Algorithm with Variable-Sized Detectors. In: Proc. the 2004 Genetic and Evolutionary Computation Conference, Seattle, Washington, USA, pp. 287–298 (2004)
Stibor, T., Bayarou, K.M., Eckert, C.: An Investigation of R-Chunk Detector Generation on Higher Alphabets. In: Deb, K., et al. (eds.) GECCO 2004. LNCS, vol. 3102, pp. 299–307. Springer, Heidelberg (2004)
Stibor, T., Mohr, P., Timmis, J., Eckert, C.: Is Negative Selection Appropriate for Anomaly Detection? In: Proc. the 2005 Genetic and Evolutionary Computation Conference (GECCO), Washington DC, USA, pp. 321–328. ACM Press, New York (2005)
Luo, W., Wang, X., et al.: Evolutionary Negative Selection Algorithms for Anomaly Detection. In: Proc. the 8th Joint Conference on Information Sciences (JCIS 2005). 7th International Conference on Computational Intelligence and Natural Computing (CINC 2005), held in conjunction with the 8th Joint Conference on Information Sciences (JCIS 2005), Salt Lake City, Utah, pp. 440–445 (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Luo, W., Zhang, Z., Wang, X. (2006). A Heuristic Detector Generation Algorithm for Negative Selection Algorithm with Hamming Distance Partial Matching Rule. In: Bersini, H., Carneiro, J. (eds) Artificial Immune Systems. ICARIS 2006. Lecture Notes in Computer Science, vol 4163. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11823940_18
Download citation
DOI: https://doi.org/10.1007/11823940_18
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-37749-8
Online ISBN: 978-3-540-37751-1
eBook Packages: Computer ScienceComputer Science (R0)