Abstract
This paper developes a new method for recognizing G-Protein Coupled Receptors (GPCRs) based on features generated from the hydropathy properties of the amino acid sequences. Using the hydropathy characteristics, namely hydropathy blocks, the protein sequences are converted into fixed-dimensional feature vectors. Subsequently, the Support Vector Machine (SVM) classifier is utilized to identify the GPCR proteins belonging to the same families or subfamilies. The experimental results on GPCR datasets show that the proteins belonging to the same family or subfamily can be identified using features generated based on the hydropathy blocks.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bouvier, M.: Structural and functional aspects of g protein coupled receptors oligomerization. Biochem. Cell Biol. 76, 1–11 (1998)
Bhasin, M., Raghava, G.P.S.: Gpcrpred: an svm-based method for prediction of families and subfamilies of g-protein coupled receptors. Nucleic Acids Research 32, W383–389 (2004)
Karchin, R., Karplus, K., Haussler, D.: Classifying g-protein coupled receptors with support vector machines. Bioinformatics 18, 147–159 (2002)
Altschul, S., Madden, T., Schafer, A., Zhang, J., Zhang, Z., Miller, W., Lipman, D.: Gapped blast and psi-blast: A new generation of protein data. Nucleic Acids Research 25, 3389–3402 (1997)
Krogh, A., Brown, M., Mian, I., Sjolander, K., Haussler, D.: Hidden markov models in computational biology: Applications to protein modeling. Journal of Molecular Biology 235, 1501–1531 (1994)
Vapnik, V.: The Nature of Statistical Learning Theory, 2nd edn. Springer, Berlin, Heidelberg, New York (1996)
Zhao, X., Huang, D., Cheung, Y., Wang, H., Huang, X.: A novel hybrid ga/svm system for protein sequences classification. In: Yang, Z.R., Yin, H., Everson, R.M. (eds.) IDEAL 2004. LNCS, vol. 3177, pp. 11–16. Springer, Heidelberg (2004)
Lolkema, J., Slotboom, D.: Hydropathy profile alignment: a tool to search for structural homologues of membrane proteins. FEMS Microbiol Rev. 22, 305–322 (1998)
Esposti, M., Crimi, M., Venturoli, G.: A critical evaluation of the hydropathy profile of membrane proteins. European Journal of Biochemistry 190, 207–219 (1990)
Lolkema, J., Slotboom, D.: Estimation of structural similarity of membrane proteins by hydropathy profile alignment. Mol. Membr. Biol. 15, 33–42 (1998)
Klingler, T., Brutlag, D.: Discovering structural correlations in a-helices. Protein Science 3, 1847–1857 (1994)
Schmidler, S.C., Liu, J.S., Brutlag, D.L.: Bayesian segmentation of protein secondary structure. Journal of Computational Biology 7, 233–248 (2000)
Panek, J., Eidhammer, I., Aasland, R.: A new method for identification of protein (sub)families in a set of proteins based on hydropathy distribution in proteins. Proteins 58, 923–934 (2005)
Taylor, W.: Identification of protein sequence homology by consensus template alignment. Journal of Molecular Biology 188, 233–258 (1986)
Vinga, S., Almeida, J.: Alignment-free sequence comparison-a review. Bioinformatics 19, 513–523 (2003)
Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines. Cambridge University Press, Cambridge, United Kingdom (1986)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Zhao, XM., Huang, DS., Zhang, S., Cheung, Ym. (2006). Classifying G-Protein Coupled Receptors with Hydropathy Blocks and Support Vector Machines. In: Huang, DS., Li, K., Irwin, G.W. (eds) Computational Intelligence and Bioinformatics. ICIC 2006. Lecture Notes in Computer Science(), vol 4115. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11816102_63
Download citation
DOI: https://doi.org/10.1007/11816102_63
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-37277-6
Online ISBN: 978-3-540-37282-0
eBook Packages: Computer ScienceComputer Science (R0)