Symbolic Implementation of Alternating Automata | SpringerLink
Skip to main content

Symbolic Implementation of Alternating Automata

  • Conference paper
Implementation and Application of Automata (CIAA 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4094))

Included in the following conference series:

  • 506 Accesses

Abstract

We show how to convert alternating Büechi automata to symbolic structures, using a variant of Miyano and Hayashi’s construction. We avoid building the nondeterministic equivalent of the alternating automaton, thus save an exponential factor in space.

For one-weak automata, Miyano and Hayashi’s approach produces automata that are larger than needed. We show a hybrid approach that produces a smaller nondeterministic automaton if part of the alternating automaton is one weak.

We perform a thorough experimental analysis and conclude that the symbolic approach outperforms the explicit one.

Supported by the European Commission under contract 507219 (PROSYD).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. IEEE-Commission: IEEE standard for Property Specification Language (PSL) (2005) IEEE Std (1850-2005)

    Google Scholar 

  2. Armoni, R., Fix, L., Flaisher, A., Gerth, R., Ginsburg, B., Kanza, T., Landver, A., Mador-Haim, S., Singerman, E., Tiemeyer, A., Vardi, M.Y., Zbar, Y.: The forSpec temporal logic: A new temporal property-specification language. In: Katoen, J.-P., Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280, pp. 296–311. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  3. Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program verification. In: Proc. Logic in Computer Science, pp. 322–331 (1986)

    Google Scholar 

  4. Somenzi, F., Bloem, R.: Efficient Büchi automata from LTL formulae. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 248–263. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  5. Gastin, P., Oddoux, D.: Fast LTL to büchi automata translation. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 53–65. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  6. Clarke, E.M., Grumberg, O., Hamaguchi, K.: Another look at LTL model checking. Formal Methods in System Design 1, 47–71 (1997)

    Article  Google Scholar 

  7. Ben-David, S., Bloem, R., Fisman, D., Griesmayer, A., Pill, I., Ruah, S.: Automata construction algorithms optimized for PSL, Prosyd D 3.2/4 (2005), http://www.prosyd.org

  8. Miyano, S., Hayashi, T.: Alternating finite automata on ω-words. Theoretical Computer Science 32, 321–330 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  9. Leucker, M.: Logics for mazurkiewicz traces. Technical Report AIB-2002-10, RWTH, Aachen, Germany (2002)

    Google Scholar 

  10. Jehle, M., Johannsen, J., Lange, M., Rachinsky, N.: Bounded model checking for all regular properties. In: 3rd Workshop on Bounded Model Checking (BMC 2005). Electronic Notes in Theoretical Computer Science, vol. 144.1, pp. 3–18 (2005)

    Google Scholar 

  11. Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems, Specification. Springer, New York (1992)

    Google Scholar 

  12. Kupferman, O., Vardi, M.Y.: Weak alternating automata are not that weak. ACM Transactions on Computational Logic 2(3), 408–429 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  13. Cimatti, A., Clarke, E., Giunchiglia, F., Roveri, M.: NUSMV: A new symbolic model verifier. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633, pp. 495–499. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  14. Heljanko, K., Junttila, T.A., Latvala, T.: Incremental and complete bounded model checking for full PLTL. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 98–111. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  15. Eén, N., Sörensson, N.: MiniSAT (2005), http://www.cs.chalmers.se/Cs/Research/FormalMethods/MiniSat/Main.html

  16. David, S.B., Orni, A.: Property-by-Example guide: a handbook of PSL/Sugar examples - PROSYD deliverable d1.1/3 (2005), http://www.prosyd.org

  17. Fritz, C.: Constructing büchi automata from linear temporal logic using simulation relations for alternating büchi automata. In: Ibarra, O., Dang, Z. (eds.) CIAA 2003. LNCS, vol. 2759, pp. 35–48. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  18. Fritz, C., Wilke, T.: Simulation relations for alternating Büchi automata. Theoretical Computer Science 338, 275–314 (2005)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bloem, R., Cimatti, A., Pill, I., Roveri, M., Semprini, S. (2006). Symbolic Implementation of Alternating Automata. In: Ibarra, O.H., Yen, HC. (eds) Implementation and Application of Automata. CIAA 2006. Lecture Notes in Computer Science, vol 4094. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11812128_20

Download citation

  • DOI: https://doi.org/10.1007/11812128_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-37213-4

  • Online ISBN: 978-3-540-37214-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics