Abstract
We describe our investigation of a fast 3D finite element method (FEM) for biomedical simulation of a muscle-activated human tongue. Our method uses a linear stiffness-warping scheme to achieve simulation speeds which are within a factor 10 of real-time rates at the expense of a small loss in accuracy. Muscle activations are produced by an arrangement of forces acting along selected edges of the FEM geometry. The model’s dynamics are integrated using an implicit Euler formulation, which can be solved using either the conjugate gradient method or a direct sparse solver. To assess the utility of this model, we compare its accuracy against slower, but less approximate, simulations of a reference tongue model prepared using the FEM simulation package ANSYS.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Mueller, M., Gross, M.: Interactive virtual materials. In: Proceedings Graphics Interface, pp. 239–246 (2004)
Gerard, J., Perrier, P., Payan, Y.: 3D biomechanical tongue modelling to study speech production. Psychology Press, Sydney (in press)
Fels, S., Vogt, F., van den Doel, K., Lloyd, J., Stavness, I., Vatikiotis-Bateson, E.: Artisynth: A biomechanical simulation platform for the vocal tract and upper airway. Technical Report TR-2006-10, Computer Science Dept., University of British Columbia (2006)
Badin, P., Bailly, G., Raybaudi, M., Segebarth, C.: A three-dimensional linear articulatory model based on mri data. In: Proceedings of the International Conference of Spoken Language (ICSLP), pp. 14–20 (1998)
Engwall, O.: A 3D tongue model based on MRI data. In: Proceedings of the International Conference of Spoken Language (ICSLP) (2000)
Stone, M., Lundberg, A.: Three-dimensional tongue surfaces from ultrasound images. In: SPIE Proc., pp. 168–179 (1996)
King, S.A., Parent, R.E.: A 3d parametric tongue model for animated speech. JVCA 12(3), 107–115 (2001)
Takemoto, H.: Morphological analysis of the human tongue muscularture for three-dimensional modeling. J. Sp. Lang. Hear. Res. 44, 95–107 (2001)
Dang, J., Honda, K.: Construction and control of a physiological articulatory model. JASA 115(2), 853–870 (2004)
Wilhelms-Tricarico, R.: Physiological modeling of speech production: methods for modeling soft-tissue articulators. JASA 97(5), 3085–3098 (1995)
Payan, Y., Perrier, P.: Synthesis of v-v sequences with a 2d biomechanical tongue model controlled by the equilibrium point hypothesis. Speech Communications 22(2), 185–205 (1997)
Gerard, J., Wilhelms-Tricarico, R., Perrier, P., Payan, Y.: A 3d dynamical biomechanical tongue model to study speech motor control. Recent Research Developments in Biomechanics 1, 49–64 (2003)
Hiiemae, K.M., Palmer, J.B.: Tongue movements in feeding and speech. Crit. Rev. Oral Biol. Med. 14, 430–449 (2003)
Bathe, K.J.: Finite element procedures. Prentice Hall, Englewood Cliffs (1996)
Zienkiewicz, O., Taylor, R.: The finite element method. Oxford (2000)
Dang, J., Honda, K.: A physiological articulatory model for simulating speech production process. JASJ 22(6), 415–425 (2001)
Gerard, J., Ohayon, J., Luboz, V., Perrier, P., Payan, Y.: Indentation for estimating the human tongue soft tissues constitutive law: application to a 3d biomechanical model to study speech motor control and pathologies of the upper airways. In: Cotin, S., Metaxas, D.N. (eds.) ISMS 2004. LNCS, vol. 3078, pp. 77–83. Springer, Heidelberg (2004)
Teran, J., Sifakis, E., Blemker, S., Hing, V.N.T., Cynthia, L., Fedkiw, R.: Creating and simulating skeletal muscle from the visible human data set. In: IEEE TVCG (in press, 2005)
Cotin, S., Delingette, H., Ayache, A.: Real-time elastic deformations of soft tissues for surgery simulation. IEEE Trans. Vis. & CG. 5(1), 62–73 (1999)
Hill, A.: The heat of shortening and the dynamic constants of muscle. Proc. Roy. Soc. B 126, 136–195 (1938)
Gladilin, E., Zachow, S., Deuflhard, P., Hege., H.-C.: Virtual fibers: A robust approach for muscle simulation. In: Proc. MEDICON, pp. 961–964 (2001)
Pai, D.K., Sueda, S., Wei., Q.: Fast physically based musculoskeletal simulation. ACM Trans. Graph (2005)
Stavness, I., Hannam, A.G., Lloyd, J.E., Fels, S.: An integrated dynamic jaw and laryngeal model constructed from CT data. In: Harders, M., Székely, G. (eds.) ISBMS 2006. LNCS, vol. 4072, pp. 169–177. Springer, Heidelberg (2006)
Nikishkov, G.: Java performance in finite element computations. Proc. Appl. Sim. & Mod., 410 (2003)
Schenk, O., Röllin, S., Hagemann, M.: Recent advances in sparse linear solver technology for semiconductor device simulation matrices. In: IEEE SISPAD, pp. 103–108 (2003)
James, D.L., Pai, D.K.: Artdefo: Accurate real time deformable objects. In: Proceedings of the International Conference on Computer Graphics and Interactive SIGGRAPH, pp. 65–72 (1999)
Barbic, J., James, D.L.: Real-time subspace integration for st.venant-kirchhoff deformable models. ACM Trans. on Graphics 24, 982–990 (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Vogt, F. et al. (2006). Efficient 3D Finite Element Modeling of a Muscle-Activated Tongue. In: Harders, M., Székely, G. (eds) Biomedical Simulation. ISBMS 2006. Lecture Notes in Computer Science, vol 4072. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11790273_3
Download citation
DOI: https://doi.org/10.1007/11790273_3
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-36009-4
Online ISBN: 978-3-540-36010-0
eBook Packages: Computer ScienceComputer Science (R0)