Efficient 3D Finite Element Modeling of a Muscle-Activated Tongue | SpringerLink
Skip to main content

Efficient 3D Finite Element Modeling of a Muscle-Activated Tongue

  • Conference paper
Biomedical Simulation (ISBMS 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4072))

Included in the following conference series:

Abstract

We describe our investigation of a fast 3D finite element method (FEM) for biomedical simulation of a muscle-activated human tongue. Our method uses a linear stiffness-warping scheme to achieve simulation speeds which are within a factor 10 of real-time rates at the expense of a small loss in accuracy. Muscle activations are produced by an arrangement of forces acting along selected edges of the FEM geometry. The model’s dynamics are integrated using an implicit Euler formulation, which can be solved using either the conjugate gradient method or a direct sparse solver. To assess the utility of this model, we compare its accuracy against slower, but less approximate, simulations of a reference tongue model prepared using the FEM simulation package ANSYS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Mueller, M., Gross, M.: Interactive virtual materials. In: Proceedings Graphics Interface, pp. 239–246 (2004)

    Google Scholar 

  2. Gerard, J., Perrier, P., Payan, Y.: 3D biomechanical tongue modelling to study speech production. Psychology Press, Sydney (in press)

    Google Scholar 

  3. Fels, S., Vogt, F., van den Doel, K., Lloyd, J., Stavness, I., Vatikiotis-Bateson, E.: Artisynth: A biomechanical simulation platform for the vocal tract and upper airway. Technical Report TR-2006-10, Computer Science Dept., University of British Columbia (2006)

    Google Scholar 

  4. Badin, P., Bailly, G., Raybaudi, M., Segebarth, C.: A three-dimensional linear articulatory model based on mri data. In: Proceedings of the International Conference of Spoken Language (ICSLP), pp. 14–20 (1998)

    Google Scholar 

  5. Engwall, O.: A 3D tongue model based on MRI data. In: Proceedings of the International Conference of Spoken Language (ICSLP) (2000)

    Google Scholar 

  6. Stone, M., Lundberg, A.: Three-dimensional tongue surfaces from ultrasound images. In: SPIE Proc., pp. 168–179 (1996)

    Google Scholar 

  7. King, S.A., Parent, R.E.: A 3d parametric tongue model for animated speech. JVCA 12(3), 107–115 (2001)

    MATH  Google Scholar 

  8. Takemoto, H.: Morphological analysis of the human tongue muscularture for three-dimensional modeling. J. Sp. Lang. Hear. Res. 44, 95–107 (2001)

    Article  Google Scholar 

  9. Dang, J., Honda, K.: Construction and control of a physiological articulatory model. JASA 115(2), 853–870 (2004)

    Google Scholar 

  10. Wilhelms-Tricarico, R.: Physiological modeling of speech production: methods for modeling soft-tissue articulators. JASA 97(5), 3085–3098 (1995)

    Google Scholar 

  11. Payan, Y., Perrier, P.: Synthesis of v-v sequences with a 2d biomechanical tongue model controlled by the equilibrium point hypothesis. Speech Communications 22(2), 185–205 (1997)

    Article  Google Scholar 

  12. Gerard, J., Wilhelms-Tricarico, R., Perrier, P., Payan, Y.: A 3d dynamical biomechanical tongue model to study speech motor control. Recent Research Developments in Biomechanics 1, 49–64 (2003)

    Google Scholar 

  13. Hiiemae, K.M., Palmer, J.B.: Tongue movements in feeding and speech. Crit. Rev. Oral Biol. Med. 14, 430–449 (2003)

    Article  Google Scholar 

  14. Bathe, K.J.: Finite element procedures. Prentice Hall, Englewood Cliffs (1996)

    Google Scholar 

  15. Zienkiewicz, O., Taylor, R.: The finite element method. Oxford (2000)

    Google Scholar 

  16. Dang, J., Honda, K.: A physiological articulatory model for simulating speech production process. JASJ 22(6), 415–425 (2001)

    Google Scholar 

  17. Gerard, J., Ohayon, J., Luboz, V., Perrier, P., Payan, Y.: Indentation for estimating the human tongue soft tissues constitutive law: application to a 3d biomechanical model to study speech motor control and pathologies of the upper airways. In: Cotin, S., Metaxas, D.N. (eds.) ISMS 2004. LNCS, vol. 3078, pp. 77–83. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  18. Teran, J., Sifakis, E., Blemker, S., Hing, V.N.T., Cynthia, L., Fedkiw, R.: Creating and simulating skeletal muscle from the visible human data set. In: IEEE TVCG (in press, 2005)

    Google Scholar 

  19. Cotin, S., Delingette, H., Ayache, A.: Real-time elastic deformations of soft tissues for surgery simulation. IEEE Trans. Vis. & CG. 5(1), 62–73 (1999)

    Article  Google Scholar 

  20. Hill, A.: The heat of shortening and the dynamic constants of muscle. Proc. Roy. Soc. B 126, 136–195 (1938)

    Article  Google Scholar 

  21. Gladilin, E., Zachow, S., Deuflhard, P., Hege., H.-C.: Virtual fibers: A robust approach for muscle simulation. In: Proc. MEDICON, pp. 961–964 (2001)

    Google Scholar 

  22. Pai, D.K., Sueda, S., Wei., Q.: Fast physically based musculoskeletal simulation. ACM Trans. Graph (2005)

    Google Scholar 

  23. Stavness, I., Hannam, A.G., Lloyd, J.E., Fels, S.: An integrated dynamic jaw and laryngeal model constructed from CT data. In: Harders, M., Székely, G. (eds.) ISBMS 2006. LNCS, vol. 4072, pp. 169–177. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  24. Nikishkov, G.: Java performance in finite element computations. Proc. Appl. Sim. & Mod., 410 (2003)

    Google Scholar 

  25. Schenk, O., Röllin, S., Hagemann, M.: Recent advances in sparse linear solver technology for semiconductor device simulation matrices. In: IEEE SISPAD, pp. 103–108 (2003)

    Google Scholar 

  26. James, D.L., Pai, D.K.: Artdefo: Accurate real time deformable objects. In: Proceedings of the International Conference on Computer Graphics and Interactive SIGGRAPH, pp. 65–72 (1999)

    Google Scholar 

  27. Barbic, J., James, D.L.: Real-time subspace integration for st.venant-kirchhoff deformable models. ACM Trans. on Graphics 24, 982–990 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vogt, F. et al. (2006). Efficient 3D Finite Element Modeling of a Muscle-Activated Tongue. In: Harders, M., Székely, G. (eds) Biomedical Simulation. ISBMS 2006. Lecture Notes in Computer Science, vol 4072. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11790273_3

Download citation

  • DOI: https://doi.org/10.1007/11790273_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-36009-4

  • Online ISBN: 978-3-540-36010-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics