A Game-Theoretic Approach to Deciding Higher-Order Matching | SpringerLink
Skip to main content

A Game-Theoretic Approach to Deciding Higher-Order Matching

  • Conference paper
Automata, Languages and Programming (ICALP 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4052))

Included in the following conference series:

  • 6155 Accesses

Abstract

We sketch a proof using a game-theoretic argument that the higher-order matching problem is decidable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Comon, H., Jurski, Y.: Higher-order matching and tree automata. In: Nielsen, M. (ed.) CSL 1997. LNCS, vol. 1414, pp. 157–176. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  2. Dougherty, D., Wierzbicki, T.: A decidable variant of higher order matching. In: Tison, S. (ed.) RTA 2002. LNCS, vol. 2378, pp. 340–351. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  3. Dowek, G.: Third-order matching is decidable. Annals of Pure and Applied Logic 69, 135–155 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  4. Huet, G.: Rèsolution d’èquations dans les langages d’ordre 1, 2, ... ω. In: Thèse de doctorat d’ètat. Universitè Paris VII (1976)

    Google Scholar 

  5. Loader, R.: Higher-order β-matching is undecidable. Logic Journal of the IGPL 11(1), 51–68 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  6. Ong, C.-H.L.: On model-checking trees generated by higher-order recursion schemes. Preprint (2006)

    Google Scholar 

  7. Padovani, V.: Decidability of all minimal models. In: Berardi, S., Coppo, M. (eds.) TYPES 1995. LNCS, vol. 1158, pp. 201–215. Springer, Heidelberg (1996)

    Google Scholar 

  8. Padovani, V.: Decidability of fourth-order matching. Mathematical Structures in Computer Science 10(3), 361–372 (2001)

    Article  MathSciNet  Google Scholar 

  9. Schubert, A.: Linear interpolation for the higher-order matching problem. In: Bidoit, M., Dauchet, M. (eds.) CAAP 1997, FASE 1997, and TAPSOFT 1997. LNCS, vol. 1214, pp. 441–452. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  10. Schmidt-Schauβ, M.: Decidability of arity-bounded higher-order matching. In: Baader, F. (ed.) CADE 2003. LNCS (LNAI), vol. 2741, pp. 488–502. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  11. Statman, R.: The typed λ-calculus is not elementary recursive. Theoretical Computer Science 9, 73–81 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  12. Stirling, C.: Modal and Temporal Properties of Processes. Texts in Computer Science. Springer, Heidelberg (2001)

    Google Scholar 

  13. Wierzbicki, T.: Complexity of higher-order matching. In: Ganzinger, H. (ed.) CADE 1999. LNCS (LNAI), vol. 1632, pp. 82–96. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Stirling, C. (2006). A Game-Theoretic Approach to Deciding Higher-Order Matching. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds) Automata, Languages and Programming. ICALP 2006. Lecture Notes in Computer Science, vol 4052. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11787006_30

Download citation

  • DOI: https://doi.org/10.1007/11787006_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-35907-4

  • Online ISBN: 978-3-540-35908-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics