Abstract
A set of k mobile agents with distinct identifiers and located in nodes of an unknown anonymous connected network, have to meet at some node. We show that this gathering problem is no harder than its special case for k = 2, called the rendezvous problem, and design deterministic protocols solving the rendezvous problem with arbitrary startups in rings and in general networks. The measure of performance is the number of steps since the startup of the last agent until the rendezvous is achieved.
For rings we design an oblivious protocol with cost \({\cal O}(n\log \ell)\), where n is the size of the network and ℓ is the minimum label of participating agents. This result is asymptotically optimal due to the lower bound showed in [18].
For general networks we show a protocol with cost polynomial in n and logℓ, independent of the maximum difference τ of startup times, which answers in affirmative the open question from [22].
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Adler, M., Räcke, H., Sivadasan, N., Sohler, C., Vöcking, B.: Randomized pursuit-evasion in graphs. In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 901–912. Springer, Heidelberg (2002)
Aleliunas, R., Karp, R.M., Lipton, R.J., Lovász, L., Rackoff, C.: Random walks, universal traversal sequences, and the complexity of maze problems. In: Proc. 20th Annual Symposium on Foundations of Computer Science (FOCS 1979), pp. 218–223 (1979)
Alpern, S.: The rendezvous search problem. SIAM J. on Control and Optimization 33, 673–683 (1995)
Alpern, S.: Rendezvous search on labelled networks. Naval Research Logistics 49, 256–274 (2002)
Alpern, S., Gal, S.: The theory of search games and rendezvous. In: Int. Series in Operations research and Management Science, Kluwer Academic Publisher, Dordrecht (2002)
Alpern, J., Baston, V., Essegaier, S.: Rendezvous search on a graph. Journal of Applied Probability 36, 223–231 (1999)
Anderson, E., Weber, R.: The rendezvous problem on discrete locations. Journal of Applied Probability 28, 839–851 (1990)
Anderson, E., Fekete, S.: Asymmetric rendezvous on the plane. In: Proc. 14th Annual ACM Symp. on Computational Geometry (1998)
Anderson, E., Fekete, S.: Two-dimensional rendezvous search. Oper. Research 49, 107–118 (2001)
Baston, V., Gal, S.: Rendezvous on the line when the players’ initial distance is given by an unknown probability distribution. SIAM J. on Control and Optimization 36, 1880–1889 (1998)
Baston, V., Gal, S.: Rendezvous search when marks are left at the starting points. Naval Reaserch Logistics 48, 722–731 (2001)
Bshouty, N.H., Higham, L., Warpechowska-Gruca, J.: Meeting times of random walks on graphs. Information Processing Letters 69(5), 259–265 (1999)
Cielibak, M., Flocchini, P., Prencipe, G., Santoro, N.: Solving the robots gathering problem. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 1181–1196. Springer, Heidelberg (2003)
Cook, S.A., McKenzie, P.: Problems complete for deterministic logarithmic space. Journal of Algorithms 8(5), 385–394 (1987)
Coppersmith, D., Doyle, P., Raghavan, P., Snir, M.: Random walks on weighted graphs, and applications to on-line algorithms. In: Proc. 22nd Annual ACM Symp. on Theory of Computing (STOC 1990), pp. 369–378 (1990)
Coppersmith, D., Tetali, P., Winkler, P.: Collisions among random walks on a graph. SIAM J. on Discrete Math. 6, 363–374 (1993)
De Marco, G., Gargano, L., Kranakis, E., Krizanc, D., Pelc, A., Vaccaro, U.: Asynchronous deterministic rendezvous in graphs. In: Jedrzejowicz, J., Szepietowski, A. (eds.) MFCS 2005. LNCS, vol. 3618, pp. 271–282. Springer, Heidelberg (2005)
Dessmark, A., Fraigniaud, P., Pelc, A.: Deterministic rendezvous in graphs. In: Di Battista, G., Zwick, U. (eds.) ESA 2003. LNCS, vol. 2832, pp. 184–195. Springer, Heidelberg (2003)
Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Gathering of asynchronous oblivious robots with limited visibility. In: Ferreira, A., Reichel, H. (eds.) STACS 2001. LNCS, vol. 2010, pp. 247–258. Springer, Heidelberg (2001)
Gal, S.: endezvous search on the line. Operations Research 47, 974–976 (1999)
Israeli, A., Jalfon, M.: Token management schemes and random walks yield self stabilizing mutual exclusion. In: Proc. 9th ACM Symp. on Principles of Distributed Computing (PODC 1990), pp. 119–131 (1990)
Kowalski, D., Pelc, A.: Polynomial deterministic rendezvous in arbitrary graphs. In: Fleischer, R., Trippen, G. (eds.) ISAAC 2004. LNCS, vol. 3341, pp. 644–656. Springer, Heidelberg (2004)
Kranakis, E., Krizanc, D., Santoro, N., Sawchuk, C.: Mobile agent rendezvous in a ring. In: Proc. 23rd Int. Conference on Distributed Computing Systems (ICDCS 2003), pp. 592–599 (2003)
Lim, W., Alpern, S.: Minimax rendezvous on the line. SIAM J. on Control and Optimization 34, 1650–1665 (1996)
Mayer, A.J., Ostrovsky, R., Yung, M.: Self-stabilizing algorithms for synchronous unidirectional rings. In: Proc. 7th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 1996), pp. 564–573 (1996)
Motwani, Raghawan: Randomized Algorithms. Cambridge University Press, Cambridge (1995)
Schelling, T.: The strategy of conflict. Oxford University Press, Oxford (1960)
Thomas, L.: Finding your kids when they are lost. Journal on Operational Res. Soc. 43, 637–639 (1992)
Yu, X., Yung, M.: Agent rendezvous: a dynamic symmetry-breaking problem. In: Meyer auf der Heide, F., Monien, B. (eds.) ICALP 1996. LNCS, vol. 1099, pp. 610–621. Springer, Heidelberg (1996)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kowalski, D.R., Malinowski, A. (2006). How to Meet in Anonymous Network. In: Flocchini, P., Gąsieniec, L. (eds) Structural Information and Communication Complexity. SIROCCO 2006. Lecture Notes in Computer Science, vol 4056. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11780823_5
Download citation
DOI: https://doi.org/10.1007/11780823_5
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-35474-1
Online ISBN: 978-3-540-35475-8
eBook Packages: Computer ScienceComputer Science (R0)