Modelling of Complex Cryptographic Systems in Terms of Simple Cellular Automata | SpringerLink
Skip to main content

Modelling of Complex Cryptographic Systems in Terms of Simple Cellular Automata

  • Conference paper
Computational Science and Its Applications - ICCSA 2006 (ICCSA 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3980))

Included in the following conference series:

  • 1223 Accesses

Abstract

In this work, it is shown that binary sequences generated by a class of linear cellular automata equal the output sequences of nonlinear sequence generators. Emphasis is on cryptographic characteristics of such sequences (period, linear complexity or number of different output sequences). These simple linear automata easily model complex nonlinear generators with application in secret key cryptography.

Work supported by Ministerio de Educación y Ciencia (Spain) Projects SEG2004-02418 and SEG2004-04352-C04-03.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bluetooth, Specifications of the Bluetooth system, Version 1.1 (February 2001), available at, http://www.bluetooth.com/

  2. Cattell, K., et al.: Synthesis of One-Dimensional Linear Hybrid Cellular Automata. IEEE Trans. Computers-Aided Design 15(3), 325–335 (1996)

    Article  Google Scholar 

  3. Coppersmith, D., Krawczyk, H., Mansour, Y.: The shrinking generator. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 22–39. Springer, Heidelberg (1994)

    Google Scholar 

  4. Golomb, S.W.: Shift Register-Sequences. Aegean Park Press, Laguna Hill (1982)

    Google Scholar 

  5. Gong, G.: Theory and Applications of q-ary Interleaved Sequences. IEEE Trans. on Information Theory 41(2), 400–411 (1995)

    Article  MATH  Google Scholar 

  6. GSM, Global Systems for Mobile Communications, available at http://cryptome.org/gsm-a512.htm

  7. Key, E.L.: An Analysis of the Structure and Complexity of Nonlinear Binary Sequence Generators. IEEE Trans. Informat. Theory 22(6), 732–736 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  8. Rueppel, R.A.: Stream Ciphers. In: Simmons, G.J. (ed.) Contemporary Cryptology, The Science of Information, pp. 65–134. IEEE Press, Los Alamitos (1992)

    Google Scholar 

  9. Serra, M., et al.: The Analysis of One-dimensional Linear Cellular Automata and Their Aliasing Properties. IEEE Trans. on Computer-Aided Design 9(7), 767–778 (1990)

    Article  MathSciNet  Google Scholar 

  10. Sun, X., et al.: The Concatenation and Partitioning of Linear Finite State Machines. Int. J. Electronics 78, 809–839 (1995)

    Article  Google Scholar 

  11. Wolfram, S.: Cellular Automata as Models of Complexity. Nature 311, 419 (1984)

    Article  Google Scholar 

  12. Wolfram, S.: Cryptography with cellular automata. In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 22–39. Springer, Heidelberg (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fúster-Sabater, A., Caballero-Gil, P., Pazo-Robles, M.E. (2006). Modelling of Complex Cryptographic Systems in Terms of Simple Cellular Automata . In: Gavrilova, M., et al. Computational Science and Its Applications - ICCSA 2006. ICCSA 2006. Lecture Notes in Computer Science, vol 3980. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11751540_61

Download citation

  • DOI: https://doi.org/10.1007/11751540_61

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-34070-6

  • Online ISBN: 978-3-540-34071-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics