Dimensionality Reduction in Harmonic Modeling for Music Information Retrieval | SpringerLink
Skip to main content

Dimensionality Reduction in Harmonic Modeling for Music Information Retrieval

  • Conference paper
Computer Music Modeling and Retrieval (CMMR 2005)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 3902))

Included in the following conference series:

  • 682 Accesses

Abstract

A 24-dimensional model for the ‘harmonic content’ of pieces of music has proved to be remarkably robust in the retrieval of polyphonic queries from a database of polyphonic music in the presence of quite significant noise and errors in either query or database document. We have further found that higher-order (1st- to 3rd-order) models tend to work better for music retrieval than 0th-order ones owing to the richer context they capture. However, there is a serious performance cost due to the large size of such models and the present paper reports on some attempts to reduce dimensionality while retaining the general robustness of the method. We find that some simple reduced-dimensionality models, if their parameter settings are carefully chosen, do indeed perform almost as well as the full 24-dimensional versions. Furthermore, in terms of recall in the top 1000 documents retrieved, we find that a 6-dimensional 2nd-order model gives even better performance than the full model. This represents a potential 64-times reduction in model size and search-time, making it a suitable candidate for filtering a large database as the first stage of a two-stage retrieval system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Pickens, J., Crawford, T.: Harmonic models for polyphonic music retrieval. In: Proceedings of the ACM Conference in Information Knowledge and Management (CIKM), McLean, Virginia (November 2002)

    Google Scholar 

  2. Pickens, J., Bello, J.P., Monti, G., Crawford, T., Dovey, M., Sandler, M., Byrd, D.: Polyphonic score retrieval using polyphonic audio queries: A harmonic modeling approach. Journal of New Music Research 32, 223–226 (2003)

    Article  Google Scholar 

  3. Pickens, J., Bello, J.P., Monti, G., Crawford, T., Dovey, M., Sandler, M., Byrd, D.: Polyphonic score retrieval using polyphonic audio queries: A harmonic modeling approach. In: Proceedings of 3rd International Symposium in Music Information Retrieval (ISMIR), IRCAM, Paris, pp. 140–149 (2002)

    Google Scholar 

  4. Krumhansl, C.L., Shepard, R.N.: Quantification of the hierarchy of tonal functions within a diatonic context. Journal of Experimental Psychology: Human Perception and Performance 5, 579–594 (1979)

    Google Scholar 

  5. Krumhansl, C.: Cognitive Foundations of Musical Pitch. Oxford University Press, New York (1990)

    Google Scholar 

  6. Purwins, H., Blankertz, B., Obermayer, K.: A new method for tracking modulations in tonal music in audio data format. In: Amari, S., Giles, C., Gori, M., Piuri, V. (eds.) International Joint Conference on Neural Networks, IJCNN 2000, vol. 6, pp. 270–275 (2000), http://doi.ieeecomputersociety.org/10.1109/IJCNN.2000.859408

  7. Shmulevich, I., Yli-Harja, O., Coyle, E., Povel, D., Lemström, K.: Perceptual issues in music pattern recognition — complexity of rhythm and key find. Computers in the Humanities 35, 23–35 (2001)

    Article  Google Scholar 

  8. Shmulevich, I., Yli-Harja, O., Coyle, E., Povel, D., Lemström, K.: Perceptual issues in music pattern recognition — complexity of rhythm and key find. In: Proceedings of the AISB 1999 Symposium on Musical Creativity, Florida (1999)

    Google Scholar 

  9. Rand, W., Birmingham, W.: Statistical analysis in music information retrieval. In: Proceedings of the 2nd International Symposium on Music Information Retrieval, Indiana University, Bloomington, Indiana, pp. 25–26 (2001)

    Google Scholar 

  10. Hoos, H.H., Renz, K., Görg, M.: Guido/mir — an experimental music information retrieval system based on guido music notation. In: Proceedings of the 2nd International Symposium on Music Information Retrieval, pp. 41–50. Indiana University, Bloomington, Indiana (2001)

    Google Scholar 

  11. Birmingham, W., Dannenberg, R.B., Wakefield, G.H., Bartsch, M., Bykowski, D., Mazzoni, D., Meek, C., Mellody, M., Rand, M.: Musart: Music retrieval via aural queries. In: Proceedings of the 2nd International Symposium on Music Information Retrieval, pp. 73–81. Indiana University, Bloomington, Indiana (2001)

    Google Scholar 

  12. Cleverdon, C.W., Mills, J., Keen, M.: Factors determining the performance of indexing systems; vol. 1, design. Technical report, ASLIB Cranfield Project, Cranfield University, Cranfield, UK (1966), http://hdl.handle.net/1826/861 , http://hdl.handle.net/1826/862

  13. Cleverdon, C.W., Keen, M.: Factors determining the performance of indexing systems; vol. 2, test results. Technical report, ASLIB Cranfield Project, Cranfield University, Cranfield, UK (1966), http://hdl.handle.net/1826/863

  14. TREC: Text retrieval conference, http://trec.nist.gov/

  15. Byrd, D., Crawford, T.: Problems of music information retrieval in the real world. Information Processing and Management 38, 249–272 (2002)

    Article  MATH  Google Scholar 

  16. Pickens, J.: Harmonic Modeling for Polyphonic Music Retrieval. PhD thesis, University of Massachusetts at Amherst (2004)

    Google Scholar 

  17. Sisman, E.: Variations (2005) (accessed July 25, 2005) http://www.grovemusic.com

  18. Bello, J.P., Pickens, J.: A robust mid-level representation for harmonic content in music signals. In: Proceedings of the 7th International Conference on Music Information Retrieval, ISMIR 2005, September 2005, Queen Mary College, University of London (2005)

    Google Scholar 

  19. Downie, J.S.: Evaluating a Simple Approach to Music Information Retrieval: Conceiving Melodic N-grams as Text. PhD thesis, University of Illinois at Urbana Champaign (1999)

    Google Scholar 

  20. Endres, D.M., Schindelin, J.E.: A new metric for probability distributions. IEEE Transactions on Information Theory 49, 1858–1860 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. Center for Computer-Assisted Research in the Humanities, Stanford University (CCARH): Musedata collection of encoded scores, http://www.musedata.org

  22. ECOLM: Electronic corpus of lute music, http://www.ecolm.org

  23. Casey, M.A.: Acoustic lexemes for organizing internet audio. Contemporary Music Review (accepted for publication, 2005)

    Google Scholar 

  24. Pickens, J.: Classifier combination for capturing musical variation. In: Proceedings of the 7th International Conference on Music Information Retrieval, ISMIR 2005, September 2005, Queen Mary College, University of London (2005)

    Google Scholar 

  25. OMRAS: Online musical recognition and searching, http://www.omras.org

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Crawford, T., Pickens, J., Wiggins, G. (2006). Dimensionality Reduction in Harmonic Modeling for Music Information Retrieval. In: Kronland-Martinet, R., Voinier, T., Ystad, S. (eds) Computer Music Modeling and Retrieval. CMMR 2005. Lecture Notes in Computer Science, vol 3902. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11751069_21

Download citation

  • DOI: https://doi.org/10.1007/11751069_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-34027-0

  • Online ISBN: 978-3-540-34028-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics