A Practical Approach to Recognizing Physical Activities | SpringerLink
Skip to main content

A Practical Approach to Recognizing Physical Activities

  • Conference paper
Pervasive Computing (Pervasive 2006)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 3968))

Included in the following conference series:

Abstract

We are developing a personal activity recognition system that is practical, reliable, and can be incorporated into a variety of health-care related applications ranging from personal fitness to elder care. To make our system appealing and useful, we require it to have the following properties: (i) data only from a single body location needed, and it is not required to be from the same point for every user; (ii) should work out of the box across individuals, with personalization only enhancing its recognition abilities; and (iii) should be effective even with a cost-sensitive subset of the sensors and data features. In this paper, we present an approach to building a system that exhibits these properties and provide evidence based on data for 8 different activities collected from 12 different subjects. Our results indicate that the system has an accuracy rate of approximately 90% while meeting our requirements. We are now developing a fully embedded version of our system based on a cell-phone platform augmented with a Bluetooth-connected sensor board.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Morris, M., Lundell, J., Dishman, E., Needham, B.: New perspectives on ubiquitous computing from ethnographic study of elders with cognitive decline. In: Dey, A.K., Schmidt, A., McCarthy, J.F. (eds.) UbiComp 2003. LNCS, vol. 2864, pp. 227–242. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  2. Lawton, M.P.: Aging and Performance of Home Tasks. Human Factors (1990)

    Google Scholar 

  3. Consolvo, S., Roessler, P., Shelton, B., LaMarcha, A., Schilit, B., Bly, S.: Technology for Care Networks of Elders. In: Proc. IEEE Pervasive Computing Mobile and Ubiquitous Systems: Successful Aging (2004)

    Google Scholar 

  4. Kern, N., Schiele, B., Schmidt, A.: Multi-sensor activity context detection for wearable computing. In: Aarts, E., Collier, R.W., van Loenen, E., de Ruyter, B. (eds.) EUSAI 2003. LNCS, vol. 2875, pp. 220–232. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  5. Bao, L., Intille, S.S.: Activity Recognition from User-Annotated Acceleration Data. In: Ferscha, A., Mattern, F. (eds.) PERVASIVE 2004. LNCS, vol. 3001, pp. 1–17. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  6. Lukowicz, P., Junker, H., Stäger, M., von Büren, T., Tröster, G.: WearNET: A Distributed Multi-sensor System for Context Aware Wearables. In: Borriello, G., Holmquist, L.E. (eds.) UbiComp 2002. LNCS, vol. 2498, pp. 361–370. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  7. Choudhury, T., Lester, J., Kern, N., Borriello, G., Hannaford, B.: A Hybrid Discriminative/Generative Approach for Modeling Human Activities. In: 19th International Joint Conference on Artificial Intelligence (IJCAI), Edinburgh, Scotland (2005)

    Google Scholar 

  8. Park, S., Locher, I., Savvides, A., Srivastava, M., Chen, A., Muntz, R., Yuen, S.: Design of a Wearable Sensor Badge for Smart Kindergarten. In: Proc. 6th International Symposium on Wearable Computers, pp. 231–238 (2002)

    Google Scholar 

  9. Mainwaring, A., Polastre, J., Szewczyk, R., Culler, D., Anderson, J.: Wireless Sensor Networks for Habitat Monitoring. In: Proc. Proceedings of the 1st ACM International Workshop on Wireless Sensor Networks and Applications, pp. 88–97 (2002)

    Google Scholar 

  10. Smailagic, A., Currens, B., Maurer, U., Rowe, A.: eWatch. [Online], available http://flat-earth.ece.cmu.edu/~eWatch/

  11. Rubinstein, Y.D., Hastie, T.: Discriminative vs. informative learning. In: Proceedings of Knowledge Discovery and Data Mining, pp. 49–53 (1997)

    Google Scholar 

  12. Viola, P., Jones, M.: Rapid Object Detection using a Boosted Cascade of Simple Features. In: Proc. Computer Vision and Pattern Recognition (2001)

    Google Scholar 

  13. Schapire, R.E., Freund, Y., Bartlett, P., Lee, W.S.: Boosting the margin: a new explanation for the effectiveness of voting methods. In: Proc., pp. 322–330 (1997)

    Google Scholar 

  14. Oliver, N., Horvitz, E.: Selective Perception Policies for Limiting Computation in Multimodal Systems: A Comparative Analysis. In: Proc. Proceedings of Int. Conf. on Multimodal Interfaces (2003)

    Google Scholar 

  15. Jaakkola, T., Haussler: Exploiting generative models in discriminative classifiers. In: Proc. in Advances in Neural Information Processing Systems (1999)

    Google Scholar 

  16. Zhang, F., Pi-Sunyer, F.X., Boozer, C.N.: Improving Energy Expenditure Estimation for Physical Activity. In: Medicine and Science in Sports and Exercise, pp. 883–889 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lester, J., Choudhury, T., Borriello, G. (2006). A Practical Approach to Recognizing Physical Activities. In: Fishkin, K.P., Schiele, B., Nixon, P., Quigley, A. (eds) Pervasive Computing. Pervasive 2006. Lecture Notes in Computer Science, vol 3968. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11748625_1

Download citation

  • DOI: https://doi.org/10.1007/11748625_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-33894-9

  • Online ISBN: 978-3-540-33895-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics