Fast Face Detection Integrating Motion Energy into a Cascade-Structured Classifier | SpringerLink
Skip to main content

Fast Face Detection Integrating Motion Energy into a Cascade-Structured Classifier

  • Conference paper
Advances in Machine Learning and Cybernetics

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3930))

  • 921 Accesses

Abstract

In this paper, we propose a fast and robust face detection method. We train a cascade-structured classifier with boosted haar-like features which uses intensity information only. To speed up the process, we integrate motion energy into the cascade-structured classifier. Motion energy can represent moving the extent of the candidate regions, which is used to reject most of the candidate windows and thus accelerates the evaluation procedure. According to the face presence situation, we divide the system state into three modes, and process input images with an intensity detector, or motion integrated dynamic detector, or else keep the pre-results. Since motion energy can be computed efficiently, processing speed is greatly accelerated. Furthermore, without depending on any supposed motion model, the system is very robust in real situations without the limitation of moving patterns including speed and direction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Viola, P., Jones, M.: Robust real time object detection. In: IEEE ICCV Workshop on Statistical and Computational Theories of Vision, Vancouver, Canada, July 13 (2001)

    Google Scholar 

  2. Rowley, H., Baluja, S., Kanade, T.: Neural network-based face detection. IEEE Patt. Anal. Mach. Intell. 20, 22–38 (1998)

    Google Scholar 

  3. Lienhart, R., Kuranov, A., Pisarevsky, V.: Empirical analysis of detection cascades of boosted classifiers for rapid object detection. In: Michaelis, B., Krell, G. (eds.) DAGM 2003. LNCS, vol. 2781, pp. 297–304. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  4. Yang, M.-H., Kriegman, D., Ahuja, N.: Detecting Faces in Images: A Survey. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI) 24(1), 34–58 (2002)

    Article  Google Scholar 

  5. Hjelm, E., Low, B.K.: Face Detection: A Survey. Computer Vision and Image Understanding 83(3), 236–274 (2001)

    Article  Google Scholar 

  6. Mikolajczyk, K., Choudhury, R., Schmid, C.: Face detection in a video sequence - a temporal approach. Computer Vision and Pattern Recognition (December 2001)

    Google Scholar 

  7. Friedman, J., Hastie, T., Tibshirani, R.: Additive logistic regression a statistical view of boosting, Technical Report, Stanford University (1998)

    Google Scholar 

  8. Schapire, E., Singer, Y.: Improved boosting algorithms using confidence-rated predictions. In: Proceedings of the Eleventh Annual Conference on Computational Learning Theory, pp. 80–91 (1998)

    Google Scholar 

  9. Li, S.Z., Zhang, Z.Q., Shum, H., Zhang, H.J.: FloatBoost learning for classification. NIPS 15 (December 2002)

    Google Scholar 

  10. Elgammal, R.D., Harwood, D., Davis, L.S.: Background and Foreground Modeling using Non-parametric Kernel Density Estimation for Visual Surveillance. Proceedings of the IEEE 90(7) (July 2002)

    Google Scholar 

  11. McKenna, S., Gong, S., Collins, J.: Face tracking and pose representation. In: British Machine Vision Conference, Edinburgh (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Deng, Y., Su, G., Zhou, J., Fu, B. (2006). Fast Face Detection Integrating Motion Energy into a Cascade-Structured Classifier. In: Yeung, D.S., Liu, ZQ., Wang, XZ., Yan, H. (eds) Advances in Machine Learning and Cybernetics. Lecture Notes in Computer Science(), vol 3930. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11739685_98

Download citation

  • DOI: https://doi.org/10.1007/11739685_98

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-33584-9

  • Online ISBN: 978-3-540-33585-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics