On the Local Reduction of Information System | SpringerLink
Skip to main content

On the Local Reduction of Information System

  • Conference paper
Advances in Machine Learning and Cybernetics

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3930))

Abstract

In this paper the definition of local reduction is proposed to describe the minimal description of a definable set by attributes of the given information system. The local reduction can present more optimal description for single decision class than the existing relative reductions. It is proven that the core of reduction or relative reduction can be expressed as the union of the cores of local reductions. The discernibility matrix of reduction and relative reduction can be obtained by composing discernibility matrixes of local reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Pawlak, Z.: Rough sets. International Journal of Computer and Information Sciences 11, 341–356 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  2. Skowron, A., Rauszer, C.: The discernibility matrices and functions in information systems, Intelligent Decision support. In: Slowinski, R. (ed.) Handbook of applications and advances of the rough sets theory. Kluwer Academic Publishers, Dordrecht (1992)

    Google Scholar 

  3. Wu, W.-Z., Zhang, M., Li, H.-Z., Mi, J.-S.: Knowledge reduction in random information systems via Dempster–Shafer theory of evidence. Information Sciences (in Press)

    Google Scholar 

  4. Wang, G.Y., Yu, H., Yang, D.C.: Decision table reduction based on conditional information entropy. Chinese J. Computers 25(7), 759–766 (2002)

    MathSciNet  Google Scholar 

  5. Beynon, M.: Reducts within the variable precision rough sets model: A further investigation. European Journal of Operational Research 134(3), 592–605 (2001)

    Article  MATH  Google Scholar 

  6. Lzak, D., Ziarko, W.: Attribute Reduction in the Bayesian Version of Variable Precision Rough Set Model. Electronic Notes in Theoretical Computer Science 82(4), 1–11 (2003)

    Article  Google Scholar 

  7. Mi, J.-S., Wu, W.-Z., Zhang, W.-X.: Approaches to knowledge reduction based on variable precision rough set model. Information Sciences 159(3-4), 255–272 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  8. Kryszkiewicz, M.: Rough set approach to incomplete information systems. Information Sciences 112(1-4), 39–49 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  9. Leung, Y., Li, D.: Maximal consistent block technique for rule acquisition in incomplete information systems. Information Sciences 153, 85–106 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  10. Swiniarski, R.W., Skowron, A.: Rough set methods in feature selection and recognition. Pattern Recognition Letters 24(6), 833–849 (2003)

    Article  MATH  Google Scholar 

  11. Wenxiu, Z., Jusheng, M., Weizhi, W.: Approaches to knowledge reductions in inconsistent systems. International Journal of Intelligent Systems 18, 989–1000 (2003)

    Article  Google Scholar 

  12. Kryskiewicz, M.: Comparative study of alternative types of knowledge reduction in inconsistent systems. International Journal of Intelligent Systems 16, 105–120 (2001)

    Article  Google Scholar 

  13. Degang, C.: The part reduction in information systems. In: Tsumoto, S., Słowiński, R., Komorowski, J., Grzymała-Busse, J.W. (eds.) RSCTC 2004. LNCS (LNAI), vol. 3066, pp. 477–482. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chen, D., Tsang, E.C.C. (2006). On the Local Reduction of Information System. In: Yeung, D.S., Liu, ZQ., Wang, XZ., Yan, H. (eds) Advances in Machine Learning and Cybernetics. Lecture Notes in Computer Science(), vol 3930. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11739685_61

Download citation

  • DOI: https://doi.org/10.1007/11739685_61

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-33584-9

  • Online ISBN: 978-3-540-33585-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics