The Hierarchical Fuzzy Evaluation System and Its Application | SpringerLink
Skip to main content

The Hierarchical Fuzzy Evaluation System and Its Application

  • Conference paper
Advances in Machine Learning and Cybernetics

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3930))

Abstract

The hierarchical fuzzy evaluation system (HFES) and its application in intelligent workflow management system (IWfMS) are discussed in this paper. First, the definition of HFES is discussed, including the definitions of the evaluation items and the relationships among them, based on the five common operations. Second, the running algorithms of the HFES are introduced to compute the values of those evaluation items and the result of the HFES. Subsequently, the application of the HFES in the IWfMS is presented in detail including the cooperating model. The experiments are carried out and the results show that the HFES is effective.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Tsai, H.C., Hsiao, S.W.: Evaluation of alternatives for product customization using fuzzy logic. Information Science 158, 233–262 (2004)

    Article  Google Scholar 

  2. Sadiq, R., Al-Zahrani, M.A., Sheikh, A.K., Husain, T., Farooq, S.: Performance evaluation of slow sand filters using fuzzy rule-based modelling. Environmental Modelling & Software 19, 507–515 (2004)

    Article  Google Scholar 

  3. Luis, M., Liu, J., Yang, J., Francisco, H.: A multigranular hierarchical linguistic model for design evaluation based on safety and cost analysis. International Journal of Intelligent System 22, 1161–1194 (2005)

    Google Scholar 

  4. Shieha, J.S., Linkensb, D.A., Asbury, A.J.: A hierarchical system of on-line advisory for monitoring and controlling the depth of anaesthesia using self-organizing fuzzy logic. Engineering Applications of Artificial Intelligence 18, 307–316 (2005)

    Article  Google Scholar 

  5. Hsu, H.M., Chen, C.T.: Aggregation of fuzzy opinions under group decision making. Fuzzy Sets and Systems 79, 279–285 (1996)

    Article  MathSciNet  Google Scholar 

  6. Samarasooriya, V.N.S., Varshney, P.K.: A fuzzy modeling approach to decision fusion under uncertainty. Fuzzy Sets and Systems 114, 59–69 (2000)

    Article  MATH  Google Scholar 

  7. Choi, D.Y.: A new aggregation method in a fuzzy environment. Decision Support System 25, 39–51 (1999)

    Article  Google Scholar 

  8. So, S.S., Cha, S.D., Kwon, Y.R.: Empirical evaluation of a fuzzy logic-based software quality prediction model. Fuzzy Sets and Systems 127, 199–208 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  9. Jaber, J.O., Mamlook, R., Awad, W.: Evaluation of energy conservation programs in residential sector using fuzzy logic methodology. Energy Policy 33, 1329–1338 (2005)

    Article  Google Scholar 

  10. Berenji, H.R., Khedkar, P.S.: Using fuzzy logic for performance evaluation in reinforcement learning. International Journal of Approximate Reasoning 18, 131–144 (1998)

    Article  Google Scholar 

  11. Li, H., Xu, Y.: Dynamic neural networks for logic formulae computing. In: Proc. 8th international conference on information processing, vol. 1, pp. 1530–1535 (2001)

    Google Scholar 

  12. Qiu, X., Min, L., Li, H., Xu, Y.: The classical logic formula computing based on dynamic neural networks. Journal of Wuhan University of Technology (Transportation Science and Engineering) 27, 750–753 (2003)

    Google Scholar 

  13. Jouseau, E., Dorizzi, B.: Neural networks and fuzzy data fusion - Application to an on-line and real time vehicle detection system. Pattern Recognition Letters 20, 97–107 (1999)

    Article  MATH  Google Scholar 

  14. Nikravesh, M., Aminzadeh, F.: Mining and fusion of petroleum data with fuzzy logic and neural network agents. Journal of Petroleum Science and Engineering 29, 221–238 (2001)

    Article  Google Scholar 

  15. Salido, J.M.F., Murakami, S.: Rought set analysis of a general type of fuzzy data using transitive aggregations of fuzzy similarity relations. Fuzzy Sets and Systems 139, 635–660 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  16. Ferreira, D.M.R., Ferreira, J.J.P.: Developing a reusable workflow engine. Journal of Systems Architecture 50, 309–324 (2004)

    Article  Google Scholar 

  17. Mahling, D.E., Craven, N., Croft, W.B.: From office automation to intelligent workflow systems. IEEE Intelligent System 10, 41–47 (1995)

    Article  Google Scholar 

  18. Moreno, M.D.R., Kearney, P.: Integrating AI planning techniques with workflow management system. Journal of Knowledge-base System 15, 285–291 (2002)

    Article  Google Scholar 

  19. Xu, Y., Ruan, D., Qin, K., Liu, J.: Lattice-valued logic. Springer, Heidelberg (2003)

    MATH  Google Scholar 

  20. Yager, R.R.: Families of OWA operators. Fuzzy Sets and Systems 59, 125–148 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  21. Yager, R.R.: Quantifier guided aggregation using OWA operators. Internat. J. Intell. Systems 11, 49–73 (1996)

    Article  Google Scholar 

  22. Qiu, X., Li, H., Jian, M., Xu, Y.: The Fuzzy Hierarchical Evaluation System in Intelligent Workflow Management System. In: Proc. 2005 International Conference on Machine Learning and Cybernetics, vol. 5, pp. 2676–2680 (2005)

    Google Scholar 

  23. Ghyym, S.H.: A semi-linguistic fuzzy approach to multi-actor decision-making: application to aggregation of experts’ judgments. Annals of Nuclear Energy 26, 1097–1112 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Qiu, X., Xu, Y., Jian, M., Li, H. (2006). The Hierarchical Fuzzy Evaluation System and Its Application. In: Yeung, D.S., Liu, ZQ., Wang, XZ., Yan, H. (eds) Advances in Machine Learning and Cybernetics. Lecture Notes in Computer Science(), vol 3930. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11739685_43

Download citation

  • DOI: https://doi.org/10.1007/11739685_43

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-33584-9

  • Online ISBN: 978-3-540-33585-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics