The Axiomatization for 0-Level Universal Logic | SpringerLink
Skip to main content

The Axiomatization for 0-Level Universal Logic

  • Conference paper
Advances in Machine Learning and Cybernetics

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3930))

Abstract

The aim of this paper is the partial axiomatization for 0-level universal logic. Firstly, a propositional calculus formal deductive system UL \(_{h{\it \epsilon}[0,1]}\) of 0-level universal logic is built up, and the corresponding algebra Ł ΠG is introduced. Then we prove the system UL \(_{h{\it \epsilon}[0,1]}\) is sound and complete with respect to the 0-level continuous universal AND operators on [0, 1]. Lastly, three extension logics of UL \(_{h{\it \epsilon}[0,1]}\) are also introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Chen, Z.C., He, H.C., Mao, M.Y.: Correlation Reasoning of Complex System Based on Universal Logic. In: IEEE Proceedings of 2003 ICMLC, Xi’an, pp. 1831–1835 (2003)

    Google Scholar 

  2. Cignoli, R., Esteva, F., Godo, L., Torrens, A.: Basic fuzzy logic is the logic of continuous t-norms and their residua. Soft computing 4, 106–112 (2000)

    Article  Google Scholar 

  3. Esteva, F., Godo, L.: Monoidal t-normbased logic: towards a logic for left-continous t- norms. Fuzzy Sets and Systems 124, 271–288 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  4. Hajek, P.: Metamathematics of Fuzzy Logic. Kluwer Academic Publishers, Dordrecht (1998)

    MATH  Google Scholar 

  5. Hajek, P.: Basic fuzzy logic and BL-algebras. Soft computing 2, 124–128 (1998)

    Google Scholar 

  6. He, H., et al.: Universal Logic Principle. Science Press, Beijing (2001) (in Chinese)

    Google Scholar 

  7. He, H., Liu, Y., He, D.: Generalized Logic in Experience Thinking. Sciences in China (Series E) 26, 72–78 (1996)

    Google Scholar 

  8. He, H., Ai, L., Wang, H.: Uncertainties and the flexible logics. In: Proceedings of 2003 ICMLC, vol. 26, pp. 72–78 (2003)

    Google Scholar 

  9. Hohle, U.: Commutative, residuated l-monoids. In: Hohle, U., Klement, E.P. (eds.) Non-Classical Logics and Their Applications to Fuzzy Subsets, pp. 53–106. Kluwer Academic Publishers, Dordrecht (1995)

    Google Scholar 

  10. Horčík, R., Cintula, P.: Product Lukasiewicz Logic. Mathematical Logic 43, 477–503 (2004)

    Article  MATH  Google Scholar 

  11. Klement, E.P., et al.: Triangular Norms. Kluwer Academic Publishers, Dordrecht (2000)

    MATH  Google Scholar 

  12. Ma, Y.C., He, H.C.: Triple-I algorithm on a kind of residuated lattice. Computer Science 31, 127–129 (2004)

    Google Scholar 

  13. Ma, Y.C., He, H.C.: The BP Algorithm of Fuzzy Reasoning Based on UL. In: Research Progress in Fuzzy Logic and Computational Intelligence —Proceedings of 2005 National Joint Conference on Fuzzy Logic and Computational Intelligence, Shenzhen, April 2005, pp. 281–284 (2005)

    Google Scholar 

  14. Pei, D.W., Wang, G.J.: The completeness and applications of the formal system L*. Science in China (Series F) 45, 40–50 (2002)

    MATH  MathSciNet  Google Scholar 

  15. Wang, G.J.: Non-classical Mathematical Logic and Approximate Reasoning. Science Press, Beijing (2000) (in Chinese)

    Google Scholar 

  16. Wang, G.J.: On the Logic Foundation of Fuzzy Reasoning. Information Sciences 117, 47–88 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  17. Wang, G.J.: The full implication triple I method for fuzzy reasoning. Sciences in China (Series E) 29, 43–53 (1999)

    MATH  Google Scholar 

  18. Wang, S.M., Wang, B.S., Pei, D.W.: A fuzzy logic for an ordinal sum t-norm. Fuzzy Sets and Systems 149, 297–307 (2005)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ma, Y., He, H. (2006). The Axiomatization for 0-Level Universal Logic. In: Yeung, D.S., Liu, ZQ., Wang, XZ., Yan, H. (eds) Advances in Machine Learning and Cybernetics. Lecture Notes in Computer Science(), vol 3930. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11739685_39

Download citation

  • DOI: https://doi.org/10.1007/11739685_39

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-33584-9

  • Online ISBN: 978-3-540-33585-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics