An Adaptive Approach for the Exploration-Exploitation Dilemma and Its Application to Economic Systems | SpringerLink
Skip to main content

An Adaptive Approach for the Exploration-Exploitation Dilemma and Its Application to Economic Systems

  • Conference paper
Learning and Adaption in Multi-Agent Systems (LAMAS 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3898))

Included in the following conference series:

Abstract

Learning agents have to deal with the exploration-exploitation dilemma. The choice between exploration and exploitation is very difficult in dynamic systems; in particular in large scale ones such as economic systems. Recent research shows that there is neither an optimal nor a unique solution for this problem. In this paper, we propose an adaptive approach based on meta-rules to adapt the choice between exploration and exploitation. This new adaptive approach relies on the variations of the performance of the agents. To validate the approach, we apply it to economic systems and compare it to two adaptive methods originally proposed by Wilson: one local and one global. Moreover, we compare different exploration strategies and focus on their influence on the performance of the agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Azoulay-Schwartz, R., Kraus, S., Wilkenfeld, J.: Exploration vs. exploitation: choosing a supplier in an environment of incomplete information. Elsevier Science (2003)

    Google Scholar 

  2. Baum, J.A.C., Rao, H.: Handbook of Organizational Change and Development: Evolutionary Dynamics of Organizational Populations and Communities. Oxford University Press, Oxford (1999)

    Google Scholar 

  3. Butz, M.V., Wilson, S.W.: An algorithmic description of XCS. Journal of Soft Computing 6, 144–153 (2002)

    Article  MATH  Google Scholar 

  4. Carmel, D., Markovitch, S.: Exploration Strategies forModel-Based Learning inMulti-agent Systems. In: Jennings, N., Sycara, K., Georgeff, M. (eds.) Autonomous Agents and Multi-agent systems, vol. 2(2), pp. 141–172 (1999)

    Google Scholar 

  5. Gittings, J.C.: Multi-armed bandit allocation indices. John Wiley and sons, New York (1989)

    Google Scholar 

  6. Roux-Dufort, C.: L’apprentissage organisationnel et le d´eveloppement de l’organisation. D´eveloppement de l’organisation, Nouveaux regards. Durand, R., Economica, pp. 111–134 (2002)

    Google Scholar 

  7. Kaelbling, L.P., Moore, A.W.: Reinforcement learning: A survey. Journal of Artificial Intelligence Research 4, 237–285 (1996)

    Google Scholar 

  8. March, J.G., Simon, H.A.: Les organisations, Dunod edn. (1991)

    Google Scholar 

  9. Meuleau, N., Bourgine, P.: Exploration of multi-state environments: Local measure and backpropagation of uncertainty. Machine Learning 35(2), 117–154 (1999)

    Article  MATH  Google Scholar 

  10. Miramontes Hercog, L., Fogarty, T.C.: Social Simulation Using a Multi-agent Model Based on Classifier Systems: The emergence of Vacillating Behavior in the “ El Farol” Bar Problem. In: Lanzi, P.L., Stolzmann, W., Wilson, S.W. (eds.) IWLCS 2001. LNCS (LNAI), vol. 2321, pp. 88–111. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  11. Rejeb, L., Guessoum, Z.: Adaptive Firms. In: Proc. AISTA 2004 International Conference on Advances in Intelligent Systems - Theory and Applications. In co-operation with the IEEE Computer Society. Luxembourg November (2004)

    Google Scholar 

  12. Penrose, E.T.: The theory of the growth of the firm. Basil Blackwell, Malden (1959)

    Google Scholar 

  13. Peres-Uribe, A., Hirsbrunner, B.: The risk of Exploration in multi-agent learning systems: a case study. In: Proc. Agents 2000 Joint workshop on learning agents, Barcelona, June 3–7, pp. 33–37 (2000)

    Google Scholar 

  14. Sutton, R.S., Barto, A.G.: Reinforcement learning, an introduction. MIT Press, Cambridge (1998)

    Google Scholar 

  15. Thrun, S.B.: The role of exploration in learning control. In: Sofge, D.A. (ed.) Handbook of Intelligent Control: Neural, Fuzzy and Adaptive Approaches. Florence, Kentucky: Van Nostrand Reinhold (1992)

    Google Scholar 

  16. Watkins, C., Dayan, P.: Q-Learning. Machine Learning 8, 279–292 (1999)

    MATH  Google Scholar 

  17. Wiering, M.: Explorations in Efficient Reinforcement Learning. Ph.D. thesis (February 1999)

    Google Scholar 

  18. Wilson, S.W.: Classifiers Fitness Based on Accuracy. Evolutionary computation 3(2), 149–175 (1995)

    Article  Google Scholar 

  19. Wilson, S.W.: Explore/Exploit Strategies in Autonomy. In: Maes, P., Mataric, M., Pollac, J., Meyer, J.-A., Wilson, S. (eds.) From Animals to Animats 4, Proc. of the 4th International Conference of Adaptive Behavior, Cambridge (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rejeb, L., Guessoum, Z., M’Hallah, R. (2006). An Adaptive Approach for the Exploration-Exploitation Dilemma and Its Application to Economic Systems. In: Tuyls, K., Hoen, P.J., Verbeeck, K., Sen, S. (eds) Learning and Adaption in Multi-Agent Systems. LAMAS 2005. Lecture Notes in Computer Science(), vol 3898. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11691839_10

Download citation

  • DOI: https://doi.org/10.1007/11691839_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-33053-0

  • Online ISBN: 978-3-540-33059-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics