Minimal Eulerian Circuit in a Labeled Digraph | SpringerLink
Skip to main content

Minimal Eulerian Circuit in a Labeled Digraph

  • Conference paper
LATIN 2006: Theoretical Informatics (LATIN 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3887))

Included in the following conference series:

Abstract

Let G = (V,A) be an Eulerian directed graph with an arc-labeling. In this work we study the problem of finding an Eulerian circuit of lexicographically minimal label among all Eulerian circuits of the graph. We prove that this problem is NP-hard by showing a reduction from the Directed-Hamiltonian-Circuit problem.

If the labeling of the arcs is such that arcs going out from the same vertex have different labels, the problem can be solved in polynomial time. We present an algorithm to construct the unique Eulerian circuit of lexicographically minimal label starting at a fixed vertex. Our algorithm is a recursive greedy algorithm which runs in \({\mathcal O}\)(|A|) steps.

We also show an application of this algorithm to construct the minimal De Bruijn sequence of a language.

Partially supported by Programa Iniciativa Científica Milenio P01-005 and Fundación Andes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Tutte, W.T.: Graph theory. Encyclopedia of Mathematics and its Applications, vol. 21. Addison-Wesley Publishing Company Advanced Book Program, Reading (1984)

    MATH  Google Scholar 

  2. Cheng, W.C., Pedram, M.: Power-optimal encoding fod DRAM address bus. In: ISLPED, pp. 250–252. ACM, New York (2000)

    Google Scholar 

  3. Kari, J.: Synchronizing finite automata on Eulerian digraphs. Theoret. Comput. Sci. 295(1-3), 223–232 (2003); Mathematical foundations of computer science (Mariánské Lázně, 2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Blazewicz, J., Hertz, A., Kobler, D., de Werra, D.: On some properties of DNA graphs. Discrete Appl. Math. 98(1-2), 1–19 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  5. Pevzner, P.A.: L-tuple DNA sequencing: computer analysis. J. Biomol. Struct. Dyn. 7, 63–73 (1989)

    Google Scholar 

  6. Pevzner, P.A., Tang, H., Waterman, M.S.: An eulerian path approach to DNA fragment assembly. Proceedings of the National Academy of Sciences 98(17), 9748–9753 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. de Bruijn, N.G.: A combinatorial problem. Nederl. Akad. Wetensch., Proc. 49, 758–764 (1946)

    MathSciNet  MATH  Google Scholar 

  8. Stein, S.K.: The mathematician as an explorer. Sci. Amer. 204(5), 148–158 (1961)

    Article  MathSciNet  Google Scholar 

  9. Bermond, J.C., Dawes, R.W., Ergincan, F.Ö.: De Bruijn and Kautz bus networks. Networks 30(3), 205–218 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chung, F., Diaconis, P., Graham, R.: Universal cycles for combinatorial structures. Discrete Math. 110(1-3), 43–59 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  11. Garey, M.R., Johnson, D.S.: Computers and intractability. W.H. Freeman and Co., San Francisco (1979); A guide to the theory of NP-completeness, A Series of Books in the Mathematical Sciences

    MATH  Google Scholar 

  12. Gibbons, A.: Algorithmic graph theory. Cambridge University Press, Cambridge (1985)

    MATH  Google Scholar 

  13. Moreno, E.: De Bruijn sequences and de Bruijn graphs for a general language. Inf. Process. Lett. 96, 214–219 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Moreno, E., Matamala, M.: Minimal de Bruijn sequence in a language with forbidden subtrings. In: Hromkovič, J., Nagl, M., Westfechtel, B. (eds.) WG 2004. LNCS, vol. 3353, pp. 168–176. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Moreno, E., Matamala, M. (2006). Minimal Eulerian Circuit in a Labeled Digraph. In: Correa, J.R., Hevia, A., Kiwi, M. (eds) LATIN 2006: Theoretical Informatics. LATIN 2006. Lecture Notes in Computer Science, vol 3887. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11682462_67

Download citation

  • DOI: https://doi.org/10.1007/11682462_67

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-32755-4

  • Online ISBN: 978-3-540-32756-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics