Abstract
Let G = (V,A) be an Eulerian directed graph with an arc-labeling. In this work we study the problem of finding an Eulerian circuit of lexicographically minimal label among all Eulerian circuits of the graph. We prove that this problem is NP-hard by showing a reduction from the Directed-Hamiltonian-Circuit problem.
If the labeling of the arcs is such that arcs going out from the same vertex have different labels, the problem can be solved in polynomial time. We present an algorithm to construct the unique Eulerian circuit of lexicographically minimal label starting at a fixed vertex. Our algorithm is a recursive greedy algorithm which runs in \({\mathcal O}\)(|A|) steps.
We also show an application of this algorithm to construct the minimal De Bruijn sequence of a language.
Partially supported by Programa Iniciativa Científica Milenio P01-005 and Fundación Andes.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Tutte, W.T.: Graph theory. Encyclopedia of Mathematics and its Applications, vol. 21. Addison-Wesley Publishing Company Advanced Book Program, Reading (1984)
Cheng, W.C., Pedram, M.: Power-optimal encoding fod DRAM address bus. In: ISLPED, pp. 250–252. ACM, New York (2000)
Kari, J.: Synchronizing finite automata on Eulerian digraphs. Theoret. Comput. Sci. 295(1-3), 223–232 (2003); Mathematical foundations of computer science (Mariánské Lázně, 2001)
Blazewicz, J., Hertz, A., Kobler, D., de Werra, D.: On some properties of DNA graphs. Discrete Appl. Math. 98(1-2), 1–19 (1999)
Pevzner, P.A.: L-tuple DNA sequencing: computer analysis. J. Biomol. Struct. Dyn. 7, 63–73 (1989)
Pevzner, P.A., Tang, H., Waterman, M.S.: An eulerian path approach to DNA fragment assembly. Proceedings of the National Academy of Sciences 98(17), 9748–9753 (2001)
de Bruijn, N.G.: A combinatorial problem. Nederl. Akad. Wetensch., Proc. 49, 758–764 (1946)
Stein, S.K.: The mathematician as an explorer. Sci. Amer. 204(5), 148–158 (1961)
Bermond, J.C., Dawes, R.W., Ergincan, F.Ö.: De Bruijn and Kautz bus networks. Networks 30(3), 205–218 (1997)
Chung, F., Diaconis, P., Graham, R.: Universal cycles for combinatorial structures. Discrete Math. 110(1-3), 43–59 (1992)
Garey, M.R., Johnson, D.S.: Computers and intractability. W.H. Freeman and Co., San Francisco (1979); A guide to the theory of NP-completeness, A Series of Books in the Mathematical Sciences
Gibbons, A.: Algorithmic graph theory. Cambridge University Press, Cambridge (1985)
Moreno, E.: De Bruijn sequences and de Bruijn graphs for a general language. Inf. Process. Lett. 96, 214–219 (2005)
Moreno, E., Matamala, M.: Minimal de Bruijn sequence in a language with forbidden subtrings. In: Hromkovič, J., Nagl, M., Westfechtel, B. (eds.) WG 2004. LNCS, vol. 3353, pp. 168–176. Springer, Heidelberg (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Moreno, E., Matamala, M. (2006). Minimal Eulerian Circuit in a Labeled Digraph. In: Correa, J.R., Hevia, A., Kiwi, M. (eds) LATIN 2006: Theoretical Informatics. LATIN 2006. Lecture Notes in Computer Science, vol 3887. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11682462_67
Download citation
DOI: https://doi.org/10.1007/11682462_67
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-32755-4
Online ISBN: 978-3-540-32756-1
eBook Packages: Computer ScienceComputer Science (R0)