Decision Theoretic Fusion Framework for Actionability Using Data Mining on an Embedded System | SpringerLink
Skip to main content

Decision Theoretic Fusion Framework for Actionability Using Data Mining on an Embedded System

  • Chapter
Data Mining

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3755))

  • 3393 Accesses

Abstract

This paper proposes a decision theoretic fusion framework for actionability using data mining techniques in an embedded car navigation system. An embedded system having limited resources is not easy to manage the abundant information in the database. Thus, the proposed system stores and manages only multiple level-of-abstraction in the database to resolve the problem of resource limitations, and then represents the information received from the Web via the wireless network after connecting a communication channel with the data mining server. To do this, we propose a decision theoretic fusion framework that includes the multiple level-of-abstraction approach combining multiple-level association rules and the summary table, as well as an active interaction rule generation algorithm for actionability in an embedded car navigation system. In addition, it includes the sensory and data fusion level rule extraction algorithm to cope with simultaneous events occurring from multi-modal interface. The proposed framework can make interactive data mining flexible, effective, and instantaneous in extracting the proper action item.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kusiak, A., et al.: Autonomous Decision-Making: A Data Mining Approach. IEEE Trans. on Information Technology in Biomedicine 4(4) (December 2000)

    Google Scholar 

  2. Delaney, B., et al.: A Low-Power, Fixed-Point Front-End Feature Extraction for a Distributed Speech Recognition System. HP Technical Report, HPL-2001-252 (2001)

    Google Scholar 

  3. Aggarwal, C.C.: A Human-Computer Interactive Method for Projected Clustering. IEEE Trans. on Knowledge and Data Engineering 16(4) (April 2004)

    Google Scholar 

  4. Campbell, D.R., Shields, P.W.: Speech enhancement using sub-band adaptive Griffiths-Jim signal processing. Speech Communication 39, 97–110 (2003)

    Article  MATH  Google Scholar 

  5. Brettlecker, G., Schuldt, H., Schatz, R.: Hyperdatabases for Peer-to-Peer Data Stream Processing. In: IEEE International Conference on Web Service, July 2004, pp. 358–366 (2004)

    Google Scholar 

  6. Ashida, H., Morita, T.: Architecture of data mining server: DATAFRONT/Server. In: IEEE SMC 1999 Conference Proceedings, October 12-15, vol. 5 (1999)

    Google Scholar 

  7. Beh, J., Ko, H.: A Novel Spectral Subtraction Scheme For Robust Speech Recognition: Spectral Subtraction using Spectral Harmonics of Speech. In: ICME, July 2003, pp. 633–636 (2003)

    Google Scholar 

  8. Han, J., et al.: Data mining for Web intelligence. Computer 35(11) (November 2002)

    Google Scholar 

  9. Han, J., Cai, Y., Cercone, N.: Data-Driven Discovery of Quantitative Rules in Relational Databases. IEEE Trans. on Knowledge and Data Eng. 5, 29–40 (1993)

    Article  Google Scholar 

  10. Aakay, M., et al.: A system for medical consultation and education using multimodal human/machine communication. IEEE Trans. on Information Technology in Biomedicine 2(4) (December 1998)

    Google Scholar 

  11. Chen, M., et al.: Data Mining: An Overview from a Database Perspective. IEEE Trans. on knowledge and Data Engineering 8(6) (December 1996)

    Google Scholar 

  12. Antony, R.T.: Principles of Data Fusion Automation. Artech House (1995)

    Google Scholar 

  13. Brooks, R.R., Iyengar, S.S.: MultiSensor Fusion: Fundamentals and Applications with Software. Prentice Hall, Englewood Cliffs (1998)

    Google Scholar 

  14. Srikant, R., Agrawal, R.: Mining Generalized Association Rules. In: Proc. 21th Int’l Conf. Very Large Data Bases, September 1995, pp. 407–419 (1995)

    Google Scholar 

  15. Mitra, S., et al.: Data Mining in Soft Computing Framework: A Survey. IEEE Trans. on Neural Networks 13(13) (January 2002)

    Google Scholar 

  16. Takata, S., Kawato, S., Mase, M.: Conversational agent who achieves tasks while interacting with humans based on scenarios. In: Robot and Human Interactive Communication Proceedings: 11th IEEE International Workshop, September 25-27 (2002)

    Google Scholar 

  17. Kim, T., Ko, H.: Uttrance Verification Under Distributed Detection and Fusion Framework. In: Eurospeech, September 2003, pp. 889–892 (2003)

    Google Scholar 

  18. Kim, W., Ahn, S., Ko, H.: Feature Compensation Scheme Based on Parallel Combined Mixture Model. In: Eurospeech, September 2003, pp. 677–680 (2003)

    Google Scholar 

  19. Huang, X., Acero, A., Hon, H.: Spoken Language Processing. Prentice Hall PTR, Englewood Cliffs (2001)

    Google Scholar 

  20. Elovici, Y., Braha, D.: A Decision-Theoretic Approach to Data Mining. IEEE Trans on Systems, Man, and Cybernetics – PART A: Systems and Humans 33(1) (January 2003)

    Google Scholar 

  21. Cao, Y., Sridharan, S., Moody, M.: Multichannel speech separation by Eigendecomposition and its application to co-talker interference removal. IEEE Transactions on Speech and Audio Processing 5(3), 209–219 (1997)

    Article  Google Scholar 

  22. Gong, Y., Kao, Y.: Implementing a high accuracy speaker-independent continuous speech recognizer on a fixed-point DSP. In: Proc. of ICASSP, June 2000, vol. 6 (2000)

    Google Scholar 

  23. http://www.sitec.or.kr

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lee, H., Kang, S., Ko, H. (2006). Decision Theoretic Fusion Framework for Actionability Using Data Mining on an Embedded System. In: Williams, G.J., Simoff, S.J. (eds) Data Mining. Lecture Notes in Computer Science(), vol 3755. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11677437_8

Download citation

  • DOI: https://doi.org/10.1007/11677437_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-32547-5

  • Online ISBN: 978-3-540-32548-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics