Hybrid Minimal Spanning Tree and Mixture of Gaussians Based Clustering Algorithm | SpringerLink
Skip to main content

Hybrid Minimal Spanning Tree and Mixture of Gaussians Based Clustering Algorithm

  • Conference paper
Foundations of Information and Knowledge Systems (FoIKS 2006)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 3861))

  • 292 Accesses

Abstract

Clustering is an important tool to explore the hidden structure of large databases. There are several algorithms based on different approaches (hierarchical, partitional, density-based, model-based, etc.). Most of these algorithms have some discrepancies, e.g. they are not able to detect clusters with convex shapes, the number of the clusters should be a priori known, they suffer from numerical problems, like sensitiveness to the initialization, etc. In this paper we introduce a new clustering algorithm based on the sinergistic combination of the hierarchial and graph theoretic minimal spanning tree based clustering and the partitional Gaussian mixture model-based clustering algorithms. The aim of this hybridization is to increase the robustness and consistency of the clustering results and to decrease the number of the heuristically defined parameters of these algorithms to decrease the influence of the user on the clustering results. As the examples used for the illustration of the operation of the new algorithm will show, the proposed algorithm can detect clusters from data with arbitrary shape and does not suffer from the numerical problems of the Gaussian mixture based clustering algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Augustson, J.G., Minker, J.: An analysis of some graph theoretical clustering techniques. J. ACM 17(4), 571–588 (1970)

    Article  MATH  Google Scholar 

  2. Backer, F.B., Hubert, L.J.: A graph-theoretic approach to goodness-of-fit in complete-link hierarchical clustering. J. Am. Stat. Assoc. 71, 870–878 (1976)

    Article  Google Scholar 

  3. Barrow, J.D., Bhavsar, S.P., Sonoda, D.H.: Minimal spanning trees, filaments and galaxy clustering. Monthly Notices of the Royal Astronomical Society 216, 17–35 (1985)

    Google Scholar 

  4. Ben-Dor, A., Yakhini, Z.: Clustering gene expression patterns. In: Proceedings of the 3rd Annual International Conference on Computational Molecular Biology (RECOMB 1999), pp. 11–14 (1999)

    Google Scholar 

  5. Bezdek, J.C., Clarke, L.P., Silbiger, M.L., Arrington, J.A., Bensaid, A.M., Hall, L.O., Murtagh, R.F.: Validity-guided (re)clustering with applications to image segmentation. IEEE Transactions on Fuzzy Systems 4, 112–123 (1996)

    Article  Google Scholar 

  6. Castellano, G., Fanelli, A.M., Mencar, C.: A fuzzy clustering approach for mining diagnostic rules. In: Proceedings of 2003 IEEE International Conference on Systems, Man & Cybernetics (IEEE SMC 2003), vol. 1, pp. 2007–2012 (2003)

    Google Scholar 

  7. Cooley, R., Mobasher, B., Srivastava, J.: Data preparation for mining world wide web browsing. Journal of Knowledge Information Systems 1(1), 5–32 (1999)

    Google Scholar 

  8. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Series B (Methodological) 39(1), 1–38 (1977)

    MATH  MathSciNet  Google Scholar 

  9. Dubes, R.C.: How many clusters are best? – an experiment. Pattern Recogn. 20(6), 645–663 (1987)

    Article  Google Scholar 

  10. Dunn, J.C.: Well separated clusters and optimal fuzzy partitions. Journal Cybernetics 4, 95–104 (1974)

    Article  MathSciNet  Google Scholar 

  11. Forina, M., Oliveros, C., Concepcion, M., Casolino, C., Casale, M.: Minimum spanning tree: ordering edges to identify clustering structure. Analytica Chimica Acta 515, 43–53 (2004)

    Article  Google Scholar 

  12. Gath, I., Geva, A.B.: Unsupervised Optimal Fuzzy Clustering. IEEE Trans. on Pattern Analysis and Machine Intelligence 11, 773–781 (1989)

    Article  Google Scholar 

  13. Gonzáles-Barrios, J.M., Quiroz, A.J.: A clustering procedure based on the comparsion between the k nearest neighbors graph and the minimal spanning tree. Statistics & Probability Letter 62, 23–34 (2003)

    Article  Google Scholar 

  14. Gotlieb, C.C., Kumar, S.: Semantic Clustering of Index Terms. J. ACM 15(4), 493–513 (1968)

    Article  Google Scholar 

  15. Gower, J.C., Ross, G.J.S.: Minimal Spanning Trees and Single Linkage Cluster Analysis. Applied Statistics 18, 54–64 (1969)

    Article  MathSciNet  Google Scholar 

  16. Heer, J., Chi, E.: Identification of Web user traffic composition using multimodal clustering and information scent. In: 1st SIAM ICDM, Workshop on Web Mining, Chicago, IL, pp. 51–58 (2001)

    Google Scholar 

  17. Jain, A.K., Dubes, R.C.: Algorithms for Clustering Data. Prentice-Hall advanced reference series. Prentice-Hall, Inc., Englewood Cliffs (1988)

    MATH  Google Scholar 

  18. Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. American Mathematical Society 7, 48–50 (1956)

    Article  MathSciNet  Google Scholar 

  19. Mitchell, T.: Machine Learning. McGraw-Hill, Inc., New York (1997)

    MATH  Google Scholar 

  20. Päivinen, N.: Clustering with a minimum spanning tree of scale-free-like structure. Pattern Recognition Letters 26(7), 921–930 (2005)

    Article  Google Scholar 

  21. Prim, R.: Shortest connection networks and some generalizations. Bell System Technical Journal 36, 1389–1401 (1957)

    Google Scholar 

  22. Raghavan, V.V., Yu, C.T.: A comparison of the stability characteristics of some graph theoretic clustering methods. IEEE Trans. Pattern Anal. Mach. Intell. 3, 393–402 (1981)

    Article  MATH  Google Scholar 

  23. Sander, J., Ester, M., Kriegel, H.-P., Xu, X.: Density-based clustering in spatial databases: the algorithm GDBSCAN and its applications. Data Mining and Knowledge Discovery 2(2), 169–194 (1998)

    Article  Google Scholar 

  24. Varma, S., Simon, R.: Iterative class discovery and feature selection using Minimal Spanning Trees. BMC Bioinformatics 5, 126–134 (2004)

    Article  Google Scholar 

  25. Zahn, C.T.: Graph-theoretical methods for detecting and describing gestalt clusters. IEEE Transaction on Computers C20, 68–86 (1971)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vathy-Fogarassy, A., Kiss, A., Abonyi, J. (2006). Hybrid Minimal Spanning Tree and Mixture of Gaussians Based Clustering Algorithm. In: Dix, J., Hegner, S.J. (eds) Foundations of Information and Knowledge Systems. FoIKS 2006. Lecture Notes in Computer Science, vol 3861. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11663881_18

Download citation

  • DOI: https://doi.org/10.1007/11663881_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-31782-1

  • Online ISBN: 978-3-540-31784-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics