Abstract
In this paper a new method to classify and retrieve affective images is proposed. First users express the affective semantics of the images with adjective words; process the data got by Semantic Differential method to obtain main factors of affection and establish affective space; extract low-level visual features of image to construct visual feature space; calculate the correlation between affective space and visual feature space with SVMs. The prototype system that embodies trained SVMs has been implemented. The system can classify the images automatically and support the affective image retrieval. The experimental results prove the effectiveness of this method.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Changle, Z.: An introduction to Mental Computation. Tsinghua University Press, Beijing (2003)
Amold, W.M., Semeulders, et al.: Content-Based Image Retrieval at the End of Early Years. IEEE Trans on Pattern Analysis and Machine Intelligence 22(12), 1349–1380 (2000)
Picard, R.W.: Affective Computing. MIT Press, Cambridge (1997)
Nagamachi, M.: Emotion Engineering. Kaibundo Publishing, Tokyo (1997)
Essa, I.A., Pentlang, A.: Coding, Analysis, Interpretation and Recognition of Facial Expressions. IEEE Tran. on Pattern Analysis and Machine Intelligence 19(7), 757–763 (1997)
Roy, D., Pentland, A.: Automatic Spoken Affect Analysis and Classification. In: Proceedings of the Second International Conference on Automatic Face and Gesture Recognition, Killington, VT, pp. 363–367 (1996)
Colombo, C., Del Bimbo, A., Pala, P.: Semantics in Visual Information Retrieval. IEEE Multimedia 6(3), 38–53 (1999)
Yoshida, K., Kato, T., Yanaru, T.: Image Retrieval System Using Impression Words. In: Proceedings of IEEE International Conference on Systems, Man, and Cybernetics, San Diego, CA, vol. 3, pp. 2780–2784 (1998)
Weining, W., Yinglin, Y.: A Survey of Image Emotional Semantic Research. Journal of Circuits and Systems 8(5), 101–109 (2003)
Ortony, A., Clore, G.L., Collins, A.: The Cognitive Structure of Emotions. Cambridge University Press, Cambridge (1988)
Lang, P.J.: The Emotion Probe: Studies of Motivation and Attention. American Psychologist 50(5), 372–385 (1995)
Hochin, T., Yamada, K., Tsrji, T.: Multimedia Data Access Based on the Sensitivity Factors. In: Proceedings of International Database Engineering and Applications Symposium, Yokohama, Japan, pp. 319–326 (2000)
Itten, J.: The Art of Color. Shanghai People’s Art Press, Shanghai (1992)
Huang, J., Kumar, S.R., Mitra, M., Zabih, R.: Image Indexing Using Color Correlograms. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Puerto Rico, pp. 762–768 (1997)
Tamura, H., Mori, S., Yamaki, T.: Texture Features Corresponding to Visual Perceptions. IEEE Trans. On System, Man and Cybernetics 8(6), 460–473 (1978)
Hu, M.-K.: Visual Pattern Recognition by Moment Invariants. IEEE Trans. on Information Theory 8(2), 179–187 (1962)
Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer, New York (2000)
Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines and Other Kernel-based Learning Methods. Publishing House of Electronics Industry, Beijing (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Wu, Q., Zhou, C., Wang, C. (2005). Content-Based Affective Image Classification and Retrieval Using Support Vector Machines. In: Tao, J., Tan, T., Picard, R.W. (eds) Affective Computing and Intelligent Interaction. ACII 2005. Lecture Notes in Computer Science, vol 3784. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11573548_31
Download citation
DOI: https://doi.org/10.1007/11573548_31
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-29621-8
Online ISBN: 978-3-540-32273-3
eBook Packages: Computer ScienceComputer Science (R0)