Towards PDE-Based Image Compression | SpringerLink
Skip to main content

Abstract

While methods based on partial differential equations (PDEs) and variational techniques are powerful tools for denoising and inpainting digital images, their use for image compression was mainly focussing on pre- or postprocessing so far. In our paper we investigate their potential within the decoding step. We start with the observation that edge-enhancing diffusion (EED), an anisotropic nonlinear diffusion filter with a diffusion tensor, is well-suited for scattered data interpolation: Even when the interpolation data are very sparse, good results are obtained that respect discontinuities and satisfy a maximum–minimum principle. This property is exploited in our studies on PDE-based image compression. We use an adaptive triangulation method based on B-tree coding for removing less significant pixels from the image. The remaining points serve as scattered interpolation data for the EED process. They can be coded in a compact and elegant way that reflects the B-tree structure. Our experiments illustrate that for high compression rates and non-textured images, this PDE-based approach gives visually better results than the widely-used JPEG coding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alter, F., Durand, S., Froment, J.: Adapted total variation for artifact free decompression of JPEG images. Journal of Mathematical Imaging and Vision 23(2), 199–211 (2005)

    Article  MathSciNet  Google Scholar 

  2. Bertalmío, M., Sapiro, G., Caselles, V., Ballester, C.: Image inpainting. In: Proc. SIGGRAPH 2000, New Orleans, LI, July 2000, pp. 417–424 (2000)

    Google Scholar 

  3. Caselles, V., Morel, J.-M., Sbert, C.: An axiomatic approach to image interpolation. IEEE Transactions on Image Processing 7(3), 376–386 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  4. Chan, T.F., Shen, J.: Non-texture inpainting by curvature-driven diffusions (CDD). Journal of Visual Communication and Image Representation 12(4), 436–449 (2001)

    Article  Google Scholar 

  5. Chan, T.F., Zhou, H.M.: Total variation improved wavelet thresholding in image compression. In: Proc. Seventh International Conference on Image Processing, Vancouver, Canada, September 2000, vol. II, pp. 391–394 (2000)

    Google Scholar 

  6. Charbonnier, P., Blanc-Féraud, L., Aubert, G., Barlaud, M.: Deterministic edge-preserving regularization in computed imaging. IEEE Transactions on Image Processing 6(2), 298–311 (1997)

    Article  Google Scholar 

  7. Demaret, L., Dyn, N., Iske, A.: Image compression by linear splines over adaptive triangulations. Technical report, Dept. of Mathematics, University of Leicester, UK (January 2005)

    Google Scholar 

  8. Distasi, R., Nappi, M., Vitulano, S.: Image compression by B-tree triangular coding. IEEE Transactions on Communications 45(9), 1095–1100 (1997)

    Article  Google Scholar 

  9. Duchon, J.: Interpolation des fonctions de deux variables suivant le principe de la flexion des plaques minces. RAIRO Mathematical Models and Numerical Analysis 10, 5–12 (1976)

    MathSciNet  Google Scholar 

  10. Ford, G.E., Estes, R.R., Chen, H.: Scale-space analysis for image sampling and interpolation. In: Proc. IEEE International Conference on Acoustics, Speech and Signal Processing, San Francisco, CA, March 1992, vol. 3, pp. 165–168 (1992)

    Google Scholar 

  11. Franke, R.: Scattered data interpolation: Tests of some methods. Mathematics of Computation 38, 181–200 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  12. Gothandaraman, A., Whitaker, R., Gregor, J.: Total variation for the removal of blocking effects in DCT based encoding. In: Proc. 2001 IEEE International Conference on Image Processing, Thessaloniki, Greece, October 2001, vol. 2, pp. 455–458 (2001)

    Google Scholar 

  13. Grossauer, H., Scherzer, O.: Using the complex Ginzburg–Landau equation for digital impainting in 2D and 3D. In: Griffin, L.D., Lillholm, M. (eds.) Scale-Space 2003. LNCS, vol. 2695, pp. 225–236. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  14. Huffman, D.A.: A method for the construction of minimum redundancy codes. Proceedings of the IRE 40, 1098–1101 (1952)

    Article  Google Scholar 

  15. Iijima, T.: Basic theory on normalization of pattern (in case of typical one-dimensional pattern). Bulletin of the Electrotechnical Laboratory 26, 368–388 (1962) (In Japanese)

    Google Scholar 

  16. Kopilovic, I., Szirányi, T.: Artifact reduction with diffusion preprocessing for image compression. Optical Engineering 44(2), 1–14 (2005)

    Article  Google Scholar 

  17. Lehmann, T., Gönner, C., Spitzer, K.: Survey: Interpolation methods in medical image processing. IEEE Transactions on Medical Imaging 18(11), 1049–1075 (1999)

    Article  Google Scholar 

  18. Malgouyres, F., Guichard, F.: Edge direction preserving image zooming: A mathematical and numerical analysis. SIAM Journal on Numerical Analysis 39(1), 1–37 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  19. Masnou, S., Morel, J.-M.: Level lines based disocclusion. In: Proc. 1998 IEEE International Conference on Image Processing, Chicago, IL, October 1998, vol. 3, pp. 259–263 (1998)

    Google Scholar 

  20. Meijering, E.: A chronology of interpolation: From ancient astronomy to modern signal and image processing. Proceedings of the IEEE 90(3), 319–342 (2002)

    Article  Google Scholar 

  21. Mrázek, P.: Nonlinear Diffusion for Image Filtering and Monotonicity Enhancement. PhD thesis, Czech Technical University, Prague, Czech Republic (June 2001)

    Google Scholar 

  22. Nielson, G.M., Tvedt, J.: Comparing methods of interpolation for scattered volumetric data. In: Rogers, D.F., Earnshaw, R.A. (eds.) State of the Art in Computer Graphics: Aspects of Visualization, pp. 67–86. Springer, New York (1994)

    Google Scholar 

  23. Pennebaker, W.B., Mitchell, J.L.: JPEG: Still Image Data Compression Standard. Springer, New York (1992)

    Google Scholar 

  24. Perona, P., Malik, J.: Scale space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence 12, 629–639 (1990)

    Article  Google Scholar 

  25. Solé, A., Caselles, V., Sapiro, G., Arandiga, F.: Morse description and geometric encoding of digital elevation maps. IEEE Transactions on Image Processing 13(9), 1245–1262 (2004)

    Article  MathSciNet  Google Scholar 

  26. Taubman, D.S., Marcellin, M.W. (eds.): JPEG 2000: Image Compression Fundamentals, Standards and Practice. Kluwer, Boston (2002)

    Google Scholar 

  27. Tschumperlé, D., Deriche, R.: Vector-valued image regularization with PDEs: A common framework for different applications. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(4), 506–516 (2005)

    Article  Google Scholar 

  28. Weickert, J.: Theoretical foundations of anisotropic diffusion in image processing. Computing Supplement 11, 221–236 (1996)

    Google Scholar 

  29. Yang, S., Hu, Y.-H.: Coding artifact removal using biased anisotropic diffusion. In: Proc. 1997 IEEE International Conference on Image Processing, Santa Barbara, CA, October 1997, vol. 2, pp. 346–349 (1997)

    Google Scholar 

  30. Yao, S., Lin, W., Lu, Z., Ong, E.P., Yang, X.: Adaptive nonlinear diffusion processes for ringing artifacts removal on JPEG 2000 images. In: Proc. 2004 IEEE International Conference on Multimedia and Expo, Taipei, Taiwan, June 2004, pp. 691–694 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Galić, I., Weickert, J., Welk, M., Bruhn, A., Belyaev, A., Seidel, HP. (2005). Towards PDE-Based Image Compression. In: Paragios, N., Faugeras, O., Chan, T., Schnörr, C. (eds) Variational, Geometric, and Level Set Methods in Computer Vision. VLSM 2005. Lecture Notes in Computer Science, vol 3752. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11567646_4

Download citation

  • DOI: https://doi.org/10.1007/11567646_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29348-4

  • Online ISBN: 978-3-540-32109-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics