Trimap Segmentation for Fast and User-Friendly Alpha Matting | SpringerLink
Skip to main content

Trimap Segmentation for Fast and User-Friendly Alpha Matting

  • Conference paper
Variational, Geometric, and Level Set Methods in Computer Vision (VLSM 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3752))

  • 1467 Accesses

Abstract

Given an image, digital matting consists in extracting a foreground element from the background. Standard methods are initialized with a trimap, a partition of the image into three regions: a definite foreground, a definite background, and a blended region where pixels are considered as a mixture of foreground and background colors. Recovering these colors and the proportion of mixture between both is an under-constrained inverse problem, sensitive to its initialization: one has to specify an accurate trimap, leaving undetermined as few pixels as possible.

First, we propose a new segmentation scheme to extract an accurate trimap from just a coarse indication of some background and/or foreground pixels. Standard statistical models are used for the foreground and the background, while a specific one is designed for the blended region. The segmentation of the three regions is conducted simultaneously by an iterative Graph Cut based optimization scheme. This user-friendly trimap is similar to carefully hand specified ones.

As a second step, we take advantage of our blended region model to design an improved matting method coherent. Based on global statistics rather than on local ones, our method is much faster than standard Bayesian matting, without quality loss, and also usable with manual trimaps.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Smith, A.R., Blinn, J.F.: Blue screen matting. In: 23rd annual conference on Computer graphics and interactive techniques, pp. 259–268. ACM Press, New York (1996)

    Google Scholar 

  2. Ruzon, M., Tomasi, C.: Alpha estimation in natural images. In: CVPR (2000)

    Google Scholar 

  3. Chuang, Y.Y., Curless, B., Salesin, D.H., Szeliski, R.: A bayesian approach to digital matting. In: CVPR, vol. 2, pp. 264–271 (2001)

    Google Scholar 

  4. Wexler, Y., Fitzgibbon, A., Zisserman, A.: Bayesian estimation of layers from multiple images. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2352, pp. 487–501. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  5. Perez, P., Gangnet, M., Blake, A.: Poisson image editing. In: SIGGRAPH (2003)

    Google Scholar 

  6. Sun, J., Jia, J., Tang, C., shum, H.: Poisson matting. In: SIGGRAPH (2004)

    Google Scholar 

  7. Blake, A., Rother, C., Brown, M., Perez, P., Torr, P.: Interactive image segmentation using an adaptive GMMRF model. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3021, pp. 428–441. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  8. Rother, C., Kolmogorov, V.: Grabcut - interactive foreground extraction using iterated graph cuts. In: SIGGRAPH (2004)

    Google Scholar 

  9. Boykov, Y., Jolly, M.P.: Interactive graph cuts for optimal boundary and region segmentation of objects in n-d images. In: ICCV, 105–112 (2001)

    Google Scholar 

  10. Kolmogorov, V., Zabih, R.: What energy functions can be minimized via graph cuts? IEEE Trans. on Pattern Analysis and Machine Intelligence, 65–81 (2004)

    Google Scholar 

  11. Mitsunaga, T., Yokoyama, T., Totsuka, T.: Autokey: Human assisted key extraction. In: SIGGRAPH (1995)

    Google Scholar 

  12. Xiao, J., Shah, M.: Accurate motion layer segmentation and matting. In: CVPR (2005)

    Google Scholar 

  13. Osher, S., Sethian, J.: Fronts propagating with curvature dependent speed: algorithms based on the Hamilton–Jacobi formulation. Journal of Computational Physics 79, 12–49 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  14. Osher, S., Paragios, N. (eds.): Geometric Level Set Methods in Imaging, Vision and Graphics. Springer, Heidelberg (2003)

    MATH  Google Scholar 

  15. Brox, T., Rousson, M., Deriche, R., Weickert, J.: Unsupervised segmentation incorporating colour, texture, and motion. In: Petkov, N., Westenberg, M.A. (eds.) CAIP 2003. LNCS, vol. 2756, pp. 353–360. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  16. Kadir, T., Brady, M.: Unsupervised non-parametric region segmentation using level sets. In: Proceedings of ICCV 2003 (2003)

    Google Scholar 

  17. MacQueen, J.: Some methods for classification and analysis of multivariate observations. In: Cam, L.M.L., Neyman, J. (eds.) Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 281–297 (1967)

    Google Scholar 

  18. Descombes, X., Sigelle, M.: Estimating gaussian markov random field parameters in a nonstationary framework: Application to remote sensing imaging. IEEE Trans. on Image Processing 8, 490–503 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  19. Orchard, M.T., Bouman, C.A.: Color Quantization of Images. IEEE Trans. on Signal Processing 39, 2677–2690 (1991)

    Article  Google Scholar 

  20. McLachlan, G., Krishnan, T.: The EM algorithm and extensions. Wiley, New York (1997)

    Google Scholar 

  21. McLachlan, G., David, P.: Finite Mixture Models. Wiley, New York (2000)

    Google Scholar 

  22. Figueiredo, M., Leitao, J.M.N., Jain, A.K.: On fitting mixture models. Energy Minimization Methods in Computer Vision and Pattern Recognition, 54–69 (1999)

    Google Scholar 

  23. Ueda, N., Nakano, R., Ghahramani, Z., Hinton, G.E.: Smem algorithm for mixture models. Neural Computation 12, 2109–2128 (2000)

    Article  Google Scholar 

  24. Rousson, M., Brox, T., Deriche, R.: Active unsupervised texture segmentation on a diffusion based space. In: International Conference on Computer Vision and Pattern Recognition, Madison, Wisconsin, USA, vol. 2, pp. 699–704 (2003)

    Google Scholar 

  25. Juan, O., Keriven, R., Postelnicu, G.: Stochastic Motion and the Level Set Method in Computer Vision: Stochastics Active Contours. International Journal of Computer Vision (in press)

    Google Scholar 

  26. Boykov, Y., Veksler, O., Zabih, R.: Fast Approximate Energy Minimization via Graph Cuts. IEEE Trans. on Pattern Analysis and Machine Intelligence 23, 1222–1239 (2001)

    Article  Google Scholar 

  27. Boykov, Y., Kolmogorov, V.: Computing geodesics and minimal surfaces via graph cuts. In: ICCV (2003)

    Google Scholar 

  28. Kitamoto, A.: The moments of the mixel distribution and its application to statistical image classification. In: Amin, A., Pudil, P., Ferri, F., Iñesta, J.M. (eds.) SPR 2000 and SSPR 2000. LNCS, vol. 1876, pp. 521–531. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  29. Kitamoto, A., Takagi, M.: Area proportion distribution – relationship with the internal structure of mixels and its application to image classification. Systems and Computers in Japan 31, 57–76 (2000)

    Article  Google Scholar 

  30. Ishikawa, H.: Exact optimization for markov random fields with convex priors. IEEE Trans. on Pattern Analysis and Machine Intelligence 25, 1333–1336 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Juan, O., Keriven, R. (2005). Trimap Segmentation for Fast and User-Friendly Alpha Matting. In: Paragios, N., Faugeras, O., Chan, T., Schnörr, C. (eds) Variational, Geometric, and Level Set Methods in Computer Vision. VLSM 2005. Lecture Notes in Computer Science, vol 3752. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11567646_16

Download citation

  • DOI: https://doi.org/10.1007/11567646_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29348-4

  • Online ISBN: 978-3-540-32109-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics