Assigning Polarity Scores to Reviews Using Machine Learning Techniques | SpringerLink
Skip to main content

Assigning Polarity Scores to Reviews Using Machine Learning Techniques

  • Conference paper
Natural Language Processing – IJCNLP 2005 (IJCNLP 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3651))

Included in the following conference series:

  • 1684 Accesses

Abstract

We propose a novel type of document classification task that quantifies how much a given document (review) appreciates the target object using not binary polarity (good or bad) but a continuous measure called sentiment polarity score (sp-score). An sp-score gives a very concise summary of a review and provides more information than binary classification. The difficulty of this task lies in the quantification of polarity. In this paper we use support vector regression (SVR) to tackle the problem. Experiments on book reviews with five-point scales show that SVR outperforms a multi-class classification method using support vector machines and the results are close to human performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Joachims, T.: Learning to Classify Text Using Support Vector Machines. Kluwer, Dordrecht (2002)

    Google Scholar 

  2. Apte, C., Damerau, F., Weiss, S.: Automated learning of decision rules for text categorization. Information Systems 12(3), 233–251 (1994)

    Google Scholar 

  3. Cristianini, N., Taylor, J.S.: An Introduction to Support Vector Machines and other Kernel-based Learning Methods. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  4. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning. Springer, Heidelberg (2001)

    Google Scholar 

  5. Herbrich, R., Graepel, T., Obermayer, K.: Large margin rank boundaries for ordinal regression. In: Advances in Large Margin Classifiers, pp. 115–132. MIT Press, Cambridge (2000)

    Google Scholar 

  6. Koppel, M., Schler, J.: The importance of neutral examples for learning sentiment. In: Workshop on the Analysis of Informal and Formal Information Exchange during Negotiations, FINEXIN (2005)

    Google Scholar 

  7. Kresel, U.: Pairwise Classification and Support Vector Machines Methods. MIT Press, Cambridge (1999)

    Google Scholar 

  8. Kudo, T., Matsumoto, Y.: A boosting algorithm for classification of semi-structured text. In: Proceedings of the 2004 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 301–308 (2004)

    Google Scholar 

  9. Lewis, D.: An evaluation of phrasal and clustered representations on a text categorization task. In: Proceedings of SIGIR-1992, 15th ACM International Conference on Research and Development in Information Retrieval, pp. 37–50 (1992)

    Google Scholar 

  10. Mullen, A., Collier, N.: Sentiment analysis using Support Vector Machines with diverse information sources. In: Proceedings of the 42nd Meeting of the Association for Computational Linguistics, ACL (2004)

    Google Scholar 

  11. Pang, B., Lee, L.: A sentimental education: Sentiment analysis using subjectivity summarization based on minimum cuts. In: Proceedings of the 42nd Meeting of the Association for Computational Linguistics (ACL), pp. 271–278 (2004)

    Google Scholar 

  12. Pang, B., Lee, L.: Seeing stars: Exploiting class relationships for sentiment categorization with respect to rating scales. In: Proceedings of the 43nd Meeting of the Association for Computational Linguistics, ACL (2005)

    Google Scholar 

  13. Pang, B., Lee, L., Vaithyanathan, S.: Thumbs up? sentiment classification using machine learning techniques. In: Proceedings of the 2002 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 79–86 (2002)

    Google Scholar 

  14. Porter, M.F.: An algorithm for suffix stripping, program. Program 14(3), 130–137 (1980)

    Google Scholar 

  15. Sebastiani, F.: Machine learning in automated text categorization. ACM Computing Surveys 34(1), 1–47 (2002)

    Article  Google Scholar 

  16. Smola, A., Sch, B.: A tutorial on Support Vector Regression. Technical report, NeuroCOLT2 Technical Report NC2-TR-1998-030 (1998)

    Google Scholar 

  17. Sorace, A., Keller, F.: Gradience in linguistic data. Lingua 115(11), 1497–1524 (2005)

    Article  Google Scholar 

  18. Taskar, B.: Learning Structured Prediction Models: A Large Margin Approach. PhD thesis, Stanford University (2004)

    Google Scholar 

  19. Tsochantaridis, I., Hofmann, T., Joachims, T., Altun, Y.: Support vector machine learning for interdependent and structured output spaces. In: Machine Learning, Proceedings of the Twenty-first International Conference, ICML (2004)

    Google Scholar 

  20. Turney, P.D.: Thumbs up or thumbs down? semantic orientation applied to unsupervised classification of reviews. In: Proceedings of the 40th Meeting of the Association for Computational Linguistics (ACL), pp. 417–424 (2002)

    Google Scholar 

  21. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, Heidelberg (1995)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Okanohara, D., Tsujii, J. (2005). Assigning Polarity Scores to Reviews Using Machine Learning Techniques. In: Dale, R., Wong, KF., Su, J., Kwong, O.Y. (eds) Natural Language Processing – IJCNLP 2005. IJCNLP 2005. Lecture Notes in Computer Science(), vol 3651. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11562214_28

Download citation

  • DOI: https://doi.org/10.1007/11562214_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29172-5

  • Online ISBN: 978-3-540-31724-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics