Approximating Integer Quadratic Programs and MAXCUT in Subdense Graphs | SpringerLink
Skip to main content

Approximating Integer Quadratic Programs and MAXCUT in Subdense Graphs

  • Conference paper
Algorithms – ESA 2005 (ESA 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3669))

Included in the following conference series:

  • 2337 Accesses

Abstract

Let A be a real symmetric n× n-matrix with eigenvalues λ 1,⋯,λ n ordered after decreasing absolute value, and b an n× 1-vector. We present an algorithm finding approximate solutions to min x*(Ax + b) and max x*(Ax + b) over x∈ {–1,1}n, with an absolute error of at most \((c_{1}|{\rm \lambda_{1}}|+|{\rm \lambda}_{\lceil c_{2} {\rm log}n\rceil}|)2n+O((\alpha n+\beta)\sqrt{n {\rm log}n})\), where α and β are the largest absolute values of the entries in A and b, respectively, for any positive constants c 1 and c 2, in time polynomial in n.

We demonstrate that the algorithm yields a PTAS for MAXCUT in regular graphs on n vertices of degree d of \(\omega(\sqrt{n{\rm log}n})\), as long as they contain O(d 4log n) 4-cycles. The strongest previous result showed that Ω(n/log n) average degree graphs admit a PTAS.

We also show that smooth n-variate polynomial integer programs of constant degree k, always can be approximated in polynomial time leaving an absolute error of o(n k), answering in the affirmative a suspicion of Arora, Karger, and Karpinski in STOC 1995.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alon, N., de la Vega, W.F., Kannan, R., Karpinski, M.: Random Sampling and Approximation of MAX-CSP Problems. In: Proc. 34th STOC, pp. 534–543. ACM, New York (2002); The full paper can be found in Technical Report TR01-100, ECCC (2001)

    Google Scholar 

  2. Arora, S., Berger, E., Hazan, E., Kindler, G., Safra, M.: On Non-Approximability for Quadratic Programs. Technical Report TR05-58, ECCC, 2005. To appear at Proc. 46th FOCS, IEEE (2005)

    Google Scholar 

  3. Arora, S., Karger, D., Karpinski, M.: Polynomial time approximation schemes for dense instances of NP-hard problems. In: Proc. 27th STOC, pp. 284–293. ACM, New York (1995)

    Google Scholar 

  4. Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and hardness of approximation problems. In: Proc. 33rd FOCS, pp. 14–23. IEEE, Los Alamitos (1992)

    Google Scholar 

  5. Biggs, N.: Algebraic Graph Theory. Cambridge University Press, Cambridge (1996); ISBN 0-521-45897-8

    Google Scholar 

  6. de la Vega, W.F.: MAX-CUT has a Randomized Approximation Scheme in Dense Graphs. Random Structures and Algorithms 8(3), 187–198 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  7. de la Vega, W.F., Karpinski, M.: Polynomial time approximation of dense weighted instances of MAX-CUT. Random Structures and Algorithms 16(4), 314–332 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  8. de la Vega, W.F., Karpinski, M.: A Polynomial Time Approximation Scheme for Subdense MAX-CUT. Technical Report TR02-044, ECCC (2002)

    Google Scholar 

  9. Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. J. ACM 42, 1115–1145 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  10. Goldreich, O., Goldwasser, S., Ron, D.: Property Testing and its Connection to Learning and Approximation. In: Proc. 37th FOCS, vol. 45, pp. 339–348. IEEE, Los Alamitos (1996); The full paper can be found in J. ACM 45, 653–750 (1998)

    Google Scholar 

  11. Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. The John Hopkins Universal Press, Baltimore (1996); ISBN 0-8018-5414-8

    MATH  Google Scholar 

  12. Karloff, H.: Linear Programming. Birkhäuser, Boston (1991); ISBN 3-7643-3561-0

    Book  MATH  Google Scholar 

  13. Papadimitriou, C.H., Yannakakis, M.: Optimization, approximation, and complexity classes. J. Comput. System Sci. 43, 425–440 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  14. Raghavan, P.: Probabilistic construction of deterministic algorithms: Approximate packing integer programs. J. Comput. System Sci. 37(2), 130–143 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  15. Raghavan, P., Thompson, C.: Randomized Rounding: a technique for provably good algorithms and algorithmic proofs. Combinatorica 7, 365–374 (1987)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Björklund, A. (2005). Approximating Integer Quadratic Programs and MAXCUT in Subdense Graphs. In: Brodal, G.S., Leonardi, S. (eds) Algorithms – ESA 2005. ESA 2005. Lecture Notes in Computer Science, vol 3669. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11561071_74

Download citation

  • DOI: https://doi.org/10.1007/11561071_74

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29118-3

  • Online ISBN: 978-3-540-31951-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics