Abstract
Let A be a real symmetric n× n-matrix with eigenvalues λ 1,⋯,λ n ordered after decreasing absolute value, and b an n× 1-vector. We present an algorithm finding approximate solutions to min x*(Ax + b) and max x*(Ax + b) over x∈ {–1,1}n, with an absolute error of at most \((c_{1}|{\rm \lambda_{1}}|+|{\rm \lambda}_{\lceil c_{2} {\rm log}n\rceil}|)2n+O((\alpha n+\beta)\sqrt{n {\rm log}n})\), where α and β are the largest absolute values of the entries in A and b, respectively, for any positive constants c 1 and c 2, in time polynomial in n.
We demonstrate that the algorithm yields a PTAS for MAXCUT in regular graphs on n vertices of degree d of \(\omega(\sqrt{n{\rm log}n})\), as long as they contain O(d 4log n) 4-cycles. The strongest previous result showed that Ω(n/log n) average degree graphs admit a PTAS.
We also show that smooth n-variate polynomial integer programs of constant degree k, always can be approximated in polynomial time leaving an absolute error of o(n k), answering in the affirmative a suspicion of Arora, Karger, and Karpinski in STOC 1995.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alon, N., de la Vega, W.F., Kannan, R., Karpinski, M.: Random Sampling and Approximation of MAX-CSP Problems. In: Proc. 34th STOC, pp. 534–543. ACM, New York (2002); The full paper can be found in Technical Report TR01-100, ECCC (2001)
Arora, S., Berger, E., Hazan, E., Kindler, G., Safra, M.: On Non-Approximability for Quadratic Programs. Technical Report TR05-58, ECCC, 2005. To appear at Proc. 46th FOCS, IEEE (2005)
Arora, S., Karger, D., Karpinski, M.: Polynomial time approximation schemes for dense instances of NP-hard problems. In: Proc. 27th STOC, pp. 284–293. ACM, New York (1995)
Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and hardness of approximation problems. In: Proc. 33rd FOCS, pp. 14–23. IEEE, Los Alamitos (1992)
Biggs, N.: Algebraic Graph Theory. Cambridge University Press, Cambridge (1996); ISBN 0-521-45897-8
de la Vega, W.F.: MAX-CUT has a Randomized Approximation Scheme in Dense Graphs. Random Structures and Algorithms 8(3), 187–198 (1996)
de la Vega, W.F., Karpinski, M.: Polynomial time approximation of dense weighted instances of MAX-CUT. Random Structures and Algorithms 16(4), 314–332 (2000)
de la Vega, W.F., Karpinski, M.: A Polynomial Time Approximation Scheme for Subdense MAX-CUT. Technical Report TR02-044, ECCC (2002)
Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. J. ACM 42, 1115–1145 (1995)
Goldreich, O., Goldwasser, S., Ron, D.: Property Testing and its Connection to Learning and Approximation. In: Proc. 37th FOCS, vol. 45, pp. 339–348. IEEE, Los Alamitos (1996); The full paper can be found in J. ACM 45, 653–750 (1998)
Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. The John Hopkins Universal Press, Baltimore (1996); ISBN 0-8018-5414-8
Karloff, H.: Linear Programming. Birkhäuser, Boston (1991); ISBN 3-7643-3561-0
Papadimitriou, C.H., Yannakakis, M.: Optimization, approximation, and complexity classes. J. Comput. System Sci. 43, 425–440 (1991)
Raghavan, P.: Probabilistic construction of deterministic algorithms: Approximate packing integer programs. J. Comput. System Sci. 37(2), 130–143 (1988)
Raghavan, P., Thompson, C.: Randomized Rounding: a technique for provably good algorithms and algorithmic proofs. Combinatorica 7, 365–374 (1987)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Björklund, A. (2005). Approximating Integer Quadratic Programs and MAXCUT in Subdense Graphs. In: Brodal, G.S., Leonardi, S. (eds) Algorithms – ESA 2005. ESA 2005. Lecture Notes in Computer Science, vol 3669. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11561071_74
Download citation
DOI: https://doi.org/10.1007/11561071_74
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-29118-3
Online ISBN: 978-3-540-31951-1
eBook Packages: Computer ScienceComputer Science (R0)