Abstract
We present fully dynamic algorithms for maintaining 3- and 5-spanners of undirected graphs. For unweighted graphs we maintain a 3- or 5-spanner under insertions and deletions of edges in O(n) amortized time per operation over a sequence of Ω(n) updates. The maintained 3-spanner (resp., 5-spanner) has O(n
3/2) edges (resp., O(n
4/3) edges), which is known to be optimal. On weighted graphs with d different edge cost values, we maintain a 3- or 5-spanner in O(n) amortized time per operation over a sequence of Ω(d
n) updates. The maintained 3-spanner (resp., 5-spanner) has O(d
n
3/2) edges (resp., O(d
n
4/3) edges). The same approach can be extended to graphs with real-valued edge costs in the range [1,C]. All our algorithms are deterministic and are substantially faster than recomputing a spanner from scratch after each update.
Partially supported by the Italian MIUR Project ALGO-NEXT “Algorithms for the Next Generation Internet and Web: Methodologies, Design and Experiments”.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Althofer, I., Das, G., Dobkin, D.P., Joseph, D., Soares, J.: On sparse spanners of weighted graphs. Discrete & Computational Geometry 9, 81–100 (1993)
Awerbuch, B.: Complexity of network synchronization. Journal of the ACM 32(4), 804–823 (1985)
Bandelt, H.-J., Dress, A.: Reconstructing the shape of a tree from observed dissimilarity data. Adv. Appl. Math. 7, 309–343 (1986)
Baswana, S., Sen, S.: A simple linear time algorithm for computing (2k - 1)-spanner of O(n 1 + 1/k) size for weighted graphs. In: Proc. 30th ICALP, pp. 384–396
Cai, L.: NP-completeness of minimum spanner problems. Discr. Appl. Math. and Comb. Oper. Research and Comp. Sci. 48(2), 187–194 (1994)
Cai, L., Keil, J.M.: Degree-bounded spanners. Parallel Processing Letters 3, 457–468 (1993)
Chew, L.P.: There are planar graphs almost as good as the complete graph. Journal of Computer and System Sciences 39(2), 205–219 (1989)
Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms. MIT Press, Cambridge (2001)
Das, G., Joseph, D.: Which triangulations approximate the complete graph. In: Proc. Int. Symp. on Optimal Algorithms, pp. 168–192
Dobkin, D., Friedman, S.J., Supowit, K.J.: Delaunay graphs are almost as good as complete graphs. Discrete Comput. Geom. 5, 399–407 (1990)
Liestman, A.L., Shermer, T.: Additive graph spanners. Networks 23, 343–364 (1993)
Liestman, A.L., Shermer, T.: Grid spanners. Networks 23, 122–133 (1993)
Peleg, D., Shäffer, A.: Graph spanners. J. of Graph Theory 13, 99–116 (1989)
Peleg, D., Ullman, J.D.: An optimal synchronizer for the hypercube. SIAM Journal on Computing 18(4), 740–747 (1989)
Richards, D., Liestman, A.L.: Degree-constrained pyramid spanners. Journal of Parallel and Distributed Computing 25, 1–6 (1995)
Roditty, L., Thorup, M., Zwick, U.: Deterministic constructions of approximate distance oracles and spanners. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 261–272. Springer, Heidelberg (2005) (to appear)
Roditty, L., Zwick, U.: Dynamic approximate all-pairs shortest paths in undirected graphs. In: Proc. FOCS 2004, pp. 499–508 (2004)
Roditty, L., Zwick, U.: On dynamic shortest paths problems. In: Albers, S., Radzik, T. (eds.) ESA 2004. LNCS, vol. 3221, pp. 580–591. Springer, Heidelberg (2004)
Wenger, R.: Extremal graphs with no C 4’s, C 6’s, or C 10’s. J. Combin. Theory Ser. B 52, 113–116 (1991)
Zwick, U.: Personal communication
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ausiello, G., Franciosa, P.G., Italiano, G.F. (2005). Small Stretch Spanners on Dynamic Graphs. In: Brodal, G.S., Leonardi, S. (eds) Algorithms – ESA 2005. ESA 2005. Lecture Notes in Computer Science, vol 3669. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11561071_48
Download citation
DOI: https://doi.org/10.1007/11561071_48
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-29118-3
Online ISBN: 978-3-540-31951-1
eBook Packages: Computer ScienceComputer Science (R0)