Abstract
We provide a complete description of dynamic algorithms for constructing convex hulls and Voronoi diagrams of additively weighted points of \({\mathbb R}^{d}\). We present simple algorithms and provide a description of the predicates. The algorithms have been implemented in \({\mathbb R}^{3}\) and experimental results are reported. Our implementation follows the CGAL design and, in particular, is made both robust and efficient through the use of filtered exact arithmetic.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Boissonnat, J.D., Cérézo, A., Devillers, O., Duquesne, J., Yvinec, M.: An algorithm for constructing the convex hull of a set of spheres in dimension d. Comput. Geom. Theory Appl. 6, 123–130 (1996)
Boissonnat, J.D., Karavelas, M.: On the combinatorial complexity of Euclidean Voronoi cells and convex hulls of d-dimensional spheres. In: Proc. 14th ACM-SIAM Sympos. Discrete Algorithms (SODA), pp. 305–312 (2003)
Aurenhammer, F., Imai, H.: Geometric relations among Voronoi diagrams. Geom. Dedicata 27, 65–75 (1988)
Karavelas, M., Yvinec, M.: Dynamic additively weighted voronoi diagrams in 2d. In: Möhring, R.H., Raman, R. (eds.) ESA 2002. LNCS, vol. 2461, pp. 586–598. Springer, Heidelberg (2002)
Kim, D.S., Kim, D., Sugihara, K.: Updating the topology of the dynamic voronoi diagram for spheres in euclidean d-dimensional space. Computer-Aided Design 18, 541–562 (2001)
Will, H.-M.: Fast and efficient computation of additively weighted Voronoi cells for applications in molecular biology. In: Arnborg, S. (ed.) SWAT 1998. LNCS, vol. 1432, pp. 310–321. Springer, Heidelberg (1998)
Kim, D.S., Cho, Y., Kim, D., Bhak, J., Lee, S.H.: Euclidean voronoi diagram of 3d spheres and applications to protein structure analysis. In: Sugihara, K. (ed.) 1st International Symposium on Voronoi Diagrams in Science and Engineering (2004)
Karavelas, M.I., Emiris, I.Z.: Root comparison techniques applied to computing the additively weighted Voronoi diagram. In: Proc. 14th ACM-SIAM Sympos. Discrete Algorithms (SODA), pp. 320–329 (2003)
Anton, F.: Voronoi diagrams of semi-algebraic sets. Ph.d. thesis, University of British Columbia (2004)
Karavelas, M.I., Emiris, I.Z.: Predicates for the planar additively weighted Voronoi diagram. Technical Report ECG-TR-122201-01, INRIA Sophia-Antipolis (2002)
The CGAL Manual, Release 3.1 (2004)
Alliez, P., Cohen-Steiner, D., Yvinec, M., Desbrun, M.: Variational tetrahedral meshing. In: SIGGRAPH (2005)
Boissonnat, J.D., Oudot, S.: Provably good surface sampling and approximation. In: Proc. 1st Symp. on Geometry Processing, pp. 9–18 (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Boissonnat, JD., Delage, C. (2005). Convex Hull and Voronoi Diagram of Additively Weighted Points. In: Brodal, G.S., Leonardi, S. (eds) Algorithms – ESA 2005. ESA 2005. Lecture Notes in Computer Science, vol 3669. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11561071_34
Download citation
DOI: https://doi.org/10.1007/11561071_34
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-29118-3
Online ISBN: 978-3-540-31951-1
eBook Packages: Computer ScienceComputer Science (R0)