Formal Versus Rigorous Mathematics: How to Get Your Papers Published | SpringerLink
Skip to main content

Formal Versus Rigorous Mathematics: How to Get Your Papers Published

  • Conference paper
Automated Reasoning with Analytic Tableaux and Related Methods (TABLEAUX 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3702))

  • 455 Accesses

Abstract

This talk will consider rigorous mathematics and the nature of proof. It begins with an historical perspective and follows the development of formal mathematics. The talk will conclude with examples demonstrating that understanding the relationship between formal mathematics and rigorous proof can assist with both the discovery and the quality of real proofs of real results.

I would like to thank David Rosenthal, Jeffrey Rosenthal, Peter Rosenthal, and Donald Sarason, who made numerous valuable suggestions. Neil Murray, never more than a phone call away when advice and insight were required, deserves special mention. Finally, there is no way to properly thank my wife Jean, who listened and made suggestions, did research, and provided much needed hugs at crucial moments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Anderson, R., Bledsoe, W.: A linear format for resolution with merging and a new technique for establishing completeness. J. ACM 17(3), 525–534 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  2. Aristotle, Analytica Posteriora, Athens, Greece, 340 BC

    Google Scholar 

  3. Berkeley, G.: The Analyst: Or, a Discourse Addressed to an Infidel Mathematician, Dublin (1734)

    Google Scholar 

  4. Cohen, P.J.: Set Theory and the Continuum Hypothesis, 4th edn. W. A. Benjamin, New York (1996)

    Google Scholar 

  5. Devlin, K.: The Joy of Sets: Fundamentals of Contemporary Set Theory, 2nd edn. Springer, New York (1994)

    Google Scholar 

  6. Dunham, W.: Euler: The Master of Us All. The Mathematical Association of America, Washington (1999)

    Google Scholar 

  7. Edwards Jr., C.H.: The Historical Development of the Calculus. Springer, New York (1994)

    MATH  Google Scholar 

  8. Eisenstein, E.L.: The Printing Press as an Agent of Change. Cambridge University Press, Cambridge (1980)

    Google Scholar 

  9. Euclid, Elements, Athens, Greece, 280 BC

    Google Scholar 

  10. Hähnle, R., Murray, N.V., Rosenthal, E.: Completeness for linear, regular negation normal form inference systems. Theoretical Computer Science 328(3), 325–354 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  11. Heath, T.L.: History of Greek Mathematics: From Thales to Euclid. Dover Publications, New York (1981)

    Google Scholar 

  12. Murray, N.V., Rosenthal, E.: Inference with path resolution and semantic graphs. J. ACM 34(2), 225–254 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  13. Murray, N.V., Rosenthal, E.: Dissolution: Making paths vanish. J.ACM 40(3), 504–535 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  14. Nagel, E., Newman, J.R.: Gödel’s Proof (revised edition). New York University Press, New York (2002)

    Google Scholar 

  15. Robinson, J.A., Rosenthal, E.: Lunch at Woody’s Place. In: Boyer, R.S. (ed.) Ethereal Proceedings of the Symposium in Honor of Woody Bledsoe, Austin, Texas, \(\aleph_3 - \aleph_{11}\) (November 1991)

    Google Scholar 

  16. Smullyan, R.M.: Gödel’s Incompleteness Theorems. Oxford University Press, Oxford (1992)

    MATH  Google Scholar 

  17. Van Heijenoort, J. (ed.): From Frege to Godel: A Source Book in Mathematical Logic, pp. 1879–1931. Harvard University Press, Cambridge (1967)

    MATH  Google Scholar 

  18. The MacTutor History of Mathematics Archive, http://www-groups.dcs.st-and.ac.uk/~history/

  19. PRIME: The Platonic Realms Interactive Mathematics Encyclopedia, http://www.mathacademy.com/pr/prime/

  20. Stanford Encyclopedia of Philosophy, http://plato.stanford.edu/

  21. Wikipedia, the Free Encyclopedia, http://en.wikipedia.org/wiki/Main_Page

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rosenthal, E. (2005). Formal Versus Rigorous Mathematics: How to Get Your Papers Published. In: Beckert, B. (eds) Automated Reasoning with Analytic Tableaux and Related Methods. TABLEAUX 2005. Lecture Notes in Computer Science(), vol 3702. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11554554_4

Download citation

  • DOI: https://doi.org/10.1007/11554554_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28931-9

  • Online ISBN: 978-3-540-31822-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics