Image Merging Based on Perceptual Information | SpringerLink
Skip to main content

Image Merging Based on Perceptual Information

  • Conference paper
Pattern Recognition and Image Analysis (ICAPR 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3687))

Included in the following conference series:

Abstract

Fusion is basically extraction of best of inputs and conveying it to the output. In this paper, we present an image fusion technique using the concept of perceptual information across the bands. This algorithm is relevant to visual sensitivity and tested by merging multisensor, multispectral and defoucused images. Fusion is achieved through the formation of one fused pyramid using the DWT coefficients from the decomposed pyramids of the source images. The fused image is obtained through conventional discrete wavelet transform (DWT) reconstruction process. Results obtained using the proposed method show a significant reduction of distortion artifacts and a large preservation of spectral information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Akerman, A.: Pyramid techniques for multisensor fusion. In: Proc. SPIE, vol. 1828, pp. 124–131 (1992)

    Google Scholar 

  2. Brown, L.: A survey of image grgistration techniques. ACM Computing Survey 24, 325–376 (1992)

    Article  Google Scholar 

  3. Burt, P., Kolczynski, R.: Enhanced image capture through fusion. In: Proc. 4th Int. Conf. Computer Vision, Berlin, Germany, pp. 173–182 (1993)

    Google Scholar 

  4. Burt, P.: The pyramid as structure for efficient computation. In: Multiresolution Image Processing and Analysis, pp. 6–35. Springer, New York (1984)

    Google Scholar 

  5. Chipman, L., Orr, T., Graham, L.: Wavelets and image fusion. In: Proc. of SPIE, vol. 2569, pp. 208–219 (1995)

    Google Scholar 

  6. Chen, H.M., lee, S., Rao, R.M., Slamani, M.A., Varshney, P.K.: Imaging for Concealed Weapon Detection. IEEE Signal Processing Magazine, 52–61 (March 2005)

    Google Scholar 

  7. Elsen, E., Pol, E., Viergever, E.: Medical image matching - A review with classification. IEEE Eng. Med. Biol., 26–39 (March 1993)

    Google Scholar 

  8. Escamilla, P.J., Mort, N.: Hybrid Kalman Filtr-Fuzzy Logic Adaptive Multi-sensor Data Fusion Architectures. In: Proceedings of the 42nd IEEE Conference on Decision and Contral, pp. 5215–5220 (December 2003)

    Google Scholar 

  9. Escamilla, P.J., Mort, N.: A hybrid Kalman filter-Fuzzy logic architecture for multisensor data fusion. In: Proceedings of the 2001 IEEE International Symposium on Intelligent contral, September 5-7, pp. 364–369 (2001)

    Google Scholar 

  10. Qu, G., Zung, D., Yan, P.: Information measure for performance of image fusion. Electronic letters, 313–315 (March 2002)

    Google Scholar 

  11. Li, H., Munjanath, B., Mitra, S.K.: Contour based multisensor image registration. In: Proceedings 26 thAsilomar Conference on Signal, Systems and Computers, Pacific Grove, CA, November 1992, pp. 182–186 (1992)

    Google Scholar 

  12. Li, H., Munjanath, B., Mitra, S.K.: A contour based approach to multisensor image registration. IEEE Trans. Image Processing 4(3), 320–334 (1995)

    Article  Google Scholar 

  13. Li, H., Munjanath, B., Mitra, S.K.: Registration of 3-D brain images by curve mathcing. In: Proceedings IEEE medical imaging Conference, San Francisco, CA, November 1993, pp. 1744–1748 (1993)

    Google Scholar 

  14. Li, H., Munjanath, B., Mitra, S.K.: Multisensor image fusion using the wavelet transform. Graph. Models Image Process. 57(3), 235–245 (1995)

    Article  Google Scholar 

  15. Liu, X., Yang, W.: Enhanced visualization of images through fusion. In: Proc. SPIE, October 2000, vol. 4231, pp. 340–345 (2000)

    Google Scholar 

  16. Luo, R., Kay, M.: Data fusion and sensor intergration: state of the art in 1990s. In: Abidi, M., Gonzalez, R. (eds.) Data Fusion in Robotics and Machine Intelligence, pp. 7–136. Academic Press, San Diego (1992)

    Google Scholar 

  17. Mallat, S.: A theory for multiresolution signal decomposition: The wavelet representation. IEEE Trans. Pattern Anal. Machine Intell. 11, 674–693 (1989)

    Article  MATH  Google Scholar 

  18. Mort, M., Prajitno, P.J.: A Multisensor Data fusion -based target tracking system. In: IEEE ICIT-2002, Thiland, pp. 427–432 (2002)

    Google Scholar 

  19. Petrovic, V., Xydeas, C.: Gradient based Multiresolution Image Fusion. IEEE Transaction on Image Processing 13(2) (February 2004)

    Google Scholar 

  20. Petrovic, V., Xydeas, C.: Objective Pixel-level Image fusion Performance Measure. In: Proceedings of SPIE, vol. 4051, pp. 89–98 (2000)

    Google Scholar 

  21. Petrovic, V., Xydeas, C.: Multiresolution image fusion using cross band feature selection. In: Proc. SPIE, April 1999, vol. 3719, pp. 319–326 (1999)

    Google Scholar 

  22. Toet, A., Ruyven, L.V., Velaton, J.: Merging thermal and visual images by a contrast pyramid. Opt. Eng. 28(7), 789–792 (1989)

    Google Scholar 

  23. Toet, A.: Hierarchical image fusion. Mach. Vis. Appl. 3, 3–11 (1990)

    Article  Google Scholar 

  24. Uner, M.K., Ramac, L., Varshney, P., Alford, M.: Concealed Weapon Detection: An image fusion approach. In: Proc. of SPIE, vol. 2942, pp. 123–132 (1997)

    Google Scholar 

  25. Zhang, Z., Blum, R.: A categorization of multiscale-decomposition based image fusion schemes with a performance study of a digital camera application. Proc. IEEE 87, 1315–1326 (1999)

    Article  Google Scholar 

  26. Wang, Z., Alan Bovik, C.: An Universal image quality index. IEEE Signal Processing Letters 9(3) (March 2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Shahid, M., Gupta, S. (2005). Image Merging Based on Perceptual Information. In: Singh, S., Singh, M., Apte, C., Perner, P. (eds) Pattern Recognition and Image Analysis. ICAPR 2005. Lecture Notes in Computer Science, vol 3687. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11552499_75

Download citation

  • DOI: https://doi.org/10.1007/11552499_75

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28833-6

  • Online ISBN: 978-3-540-31999-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics