Meeting the Application Requirements of Intelligent Video Surveillance Systems in Moving Object Detection | SpringerLink
Skip to main content

Meeting the Application Requirements of Intelligent Video Surveillance Systems in Moving Object Detection

  • Conference paper
Pattern Recognition and Image Analysis (ICAPR 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3687))

Included in the following conference series:

Abstract

In a video surveillance system, moving object detection is the most challenging problem especially if the system is applied to complex environments with variable lighting, dynamic and articulate scenes, etc. Furthermore, a video surveillance system is a real-time application, so discouraging the use of good, but computationally expensive, solutions. This paper presents a set of improvements of a basic background subtraction algorithm that are suitable for video surveillance applications. Besides we present a new performance evaluation scheme never used in the context of moving object detection algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cucchiara, R., Grana, C., Piccardi, M., Prati, A.: Detecting Moving Objects, Ghosts, and Shadows in Video Streams. IEEE Trans. PAMI 25(10), 1337–1342 (2003)

    Google Scholar 

  2. Ellis, T., Xu, M.: Object Detection and Tracking in an Open and Dynamic World. In: Workshop on Performance Evaluation of Tracking Systems, PETS 2001 (2001)

    Google Scholar 

  3. ftp://pets.rdg.ac.uk/PETS2001/

  4. Friedman, N., Russell, S.: Image segmentation in video sequences: a probabilistic approach. In: 13th Annual Conference on Uncertainty in Artificial Intelligence (1997)

    Google Scholar 

  5. Gupte, S., Masoud, O., Martin, R.F.K., Papanikolopoulos, N.P.: Detection and Classification of Vehicles. IEEE Transac. on ITS 3(1), 37–47 (2002)

    Google Scholar 

  6. Haritaoglu, I., Harwood, D., Davis, L.S.: W4: real-time surveillance of people and their activities. IEEE Transac. on PAMI 22(8), 809–830 (2000)

    Google Scholar 

  7. Heikkilä, J., Silvén, O.: A Real-Time System for Monitoring of Cyclists and Pedestrians. In: IEEE Workshop on Visual Surveillance (VS 1999), pp. 74–81 (1999)

    Google Scholar 

  8. Lo, B., Velastin, S.: Automatic congestion detection system for underground platforms. In: 2001 International symposium on intelligent multimedia, video, and speech processing, pp. 158–161 (2001)

    Google Scholar 

  9. Marcenaro, L., Ferrari, M., Marchesotti, L., Regazzoni, C.S.: Multiple object tracking under heavy occlusions by using Kalman filters based on shape matching. In: IEEE International Conference on Image Processing, vol. 3, pp. 341–344 (2002)

    Google Scholar 

  10. Matsushita, Y., Nishino, K., Ikeuchi, K., Sakauchi, M.: Illumination Normalization with Time-Dependent Intrinsic Image for Video Surveillance. IEEE Trans. on PAMI 26(10), 1336–1347 (2004)

    Google Scholar 

  11. Stauder, J., Mech, R., Ostermann, J.: Detection of moving cast shadows for object segmentation. IEEE Transac. on Multimedia 1(1), 65–76 (1999)

    Article  Google Scholar 

  12. Stauffer, C., Grimson, W.E.L.: Learning patterns of activity using real-time tracking. IEEE Trans. on PAMI 22(8), 747–757 (2000)

    Google Scholar 

  13. Toyama, K., Krumm, J., Brumitt, B., Meyers, B.: Wallflower: Principles and Practice of Background Maintenance. In: Seventh IEEE International Conference on Computer Vision, vol. 1, pp. 255–261 (1999)

    Google Scholar 

  14. Wolf, C.: Text Detection in Images taken from Videos Sequences for Semantic Indexing, Ph.D. Thesis at INSA de Lyon, 20, rue Albert Einstein, 69621 Villeurbanne Cedex, France (2003)

    Google Scholar 

  15. Wren, C.R., Azarbayejani, A., Darrel, T., Pentland, A.P.: Pfinder: Real-Time Tracking of the Human Body. IEEE Trans. PAMI 19(7), 780–785 (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Conte, D., Foggia, P., Petretta, M., Tufano, F., Vento, M. (2005). Meeting the Application Requirements of Intelligent Video Surveillance Systems in Moving Object Detection. In: Singh, S., Singh, M., Apte, C., Perner, P. (eds) Pattern Recognition and Image Analysis. ICAPR 2005. Lecture Notes in Computer Science, vol 3687. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11552499_72

Download citation

  • DOI: https://doi.org/10.1007/11552499_72

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28833-6

  • Online ISBN: 978-3-540-31999-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics